@article{KaiserVoggFuerstetal.2015, author = {Kaiser, Bettina and Vogg, Gerd and F{\"u}rst, Ursula B. and Albert, Markus}, title = {Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants}, series = {Frontiers in Plant Science}, volume = {6}, journal = {Frontiers in Plant Science}, number = {45}, doi = {10.3389/fpls.2015.00045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144091}, year = {2015}, abstract = {By comparison with plant microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.}, language = {en} } @article{MoellerOverloeperFoerstneretal.2014, author = {M{\"o}ller, Philip and Overl{\"o}per, Aaron and F{\"o}rstner, Konrad U. and Wen, Tuan-Nan and Sharma, Cynthia M. and Lai, Erh-Min and Narberhaus, Franz}, title = {Profound Impact of Hfq on Nutrient Acquisition, Metabolism and Motility in the Plant Pathogen Agrobacterium tumefaciens}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, doi = {10.1371/journal.pone.0110427}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114874}, pages = {e110427}, year = {2014}, abstract = {As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-sequencing (RIP-seq) of Hfq-bound RNAs, we demonstrate the pervasive role of Hfq in nutrient acquisition, metabolism and motility of the plant pathogen Agrobacterium tumefaciens. 136 of 2544 proteins identified by iTRAQ (isobaric tags for relative and absolute quantitation) were affected in the absence of Hfq. Most of them were associated with ABC transporters, general metabolism and motility. RIP-seq of chromosomally encoded Hfq 3xFlag revealed 1697 mRNAs and 209 non-coding RNAs (ncRNAs) associated with Hfq. 56 ncRNAs were previously undescribed. Interestingly, 55\% of the Hfq-bound ncRNAs were encoded antisense (as) to a protein-coding sequence suggesting that A. tumefaciens Hfq plays an important role in asRNA-target interactions. The exclusive enrichment of 296 mRNAs and 31 ncRNAs under virulence conditions further indicates a role for post-transcriptional regulation in A. tumefaciens-mediated plant infection. On the basis of the iTRAQ and RIP-seq data, we assembled a comprehensive model of the Hfq core regulon in A. tumefaciens.}, language = {en} } @article{DimastrogiovanniFroehlichBandyraetal.2014, author = {Dimastrogiovanni, Daniela and Fr{\"o}hlich, Kathrin S. and Bandyra, Katarzyna J. and Bruce, Heather A. and Hohensee, Susann and Vogel, J{\"o}rg and Luisi, Ben F.}, title = {Recognition of the small regulatory RNA RydC by the bacterial Hfq protein}, series = {eLife}, volume = {3}, journal = {eLife}, number = {e05375}, issn = {2050-084X}, doi = {10.7554/eLife.05375}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114191}, year = {2014}, abstract = {Bacterial small RNAs (sRNAs) are key elements of regulatory networks that modulate gene expression. The sRNA RydC of Salmonella sp. and Escherichia coli is an example of this class of riboregulators. Like many other sRNAs, RydC bears a 'seed' region that recognises specific transcripts through base-pairing, and its activities are facilitated by the RNA chaperone Hfq. The crystal structure of RydC in complex with E. coli Hfq at 3.48 angstrom resolution illuminates how the protein interacts with and presents the sRNA for target recognition. Consolidating the protein-RNA complex is a host of distributed interactions mediated by the natively unstructured termini of Hfq. Based on the structure and other data, we propose a model for a dynamic effector complex comprising Hfq, small RNA, and the cognate mRNA target.}, language = {en} }