@article{SagivMichaeliAssietal.2015, author = {Sagiv, Jitka Y. and Michaeli, Janna and Assi, Simaan and Mishalian, Inbal and Kisos, Hen and Levy, Liran and Damti, Pazzit and Lumbroso, Delphine and Polyansky, Lola and Sionov, Ronit V. and Ariel, Amiram and Hovav, Avi-Hai and Henke, Erik and Fridlender, Zvi G. and Granot, Zvi}, title = {Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer}, series = {Cell Reports}, volume = {10}, journal = {Cell Reports}, number = {4}, doi = {10.1016/j.celrep.2014.12.039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144102}, pages = {562-573}, year = {2015}, abstract = {Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro-and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs). LDNs consist of both immature myeloid-derived suppressor cells (MDSCs) and mature cells that are derived from HDNs in a TGF-beta-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.}, language = {en} } @article{RousochatzakisReutherThomaleetal.2015, author = {Rousochatzakis, Ioannis and Reuther, Johannes and Thomale, Ronny and Rachel, Stephan and Perkins, N. B.}, title = {Phase Diagram and Quantum Order by Disorder in the Kitaev K\(_1\) - K\(_2\) Honeycomb Magnet}, series = {Physical Review X}, volume = {5}, journal = {Physical Review X}, number = {041035}, doi = {10.1103/PhysRevX.5.041035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137235}, year = {2015}, abstract = {We show that the topological Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second-neighbor Kitaev coupling K\(_2\), which has recently been shown to be the dominant perturbation away from the nearest-neighbor model in iridate Na\(_2\)IrO\(_3\), and may also play a role in \(\alpha\)-RuCl\(_3\) and Li\(_2\)IrO\(_3\). This coupling naturally explains the zigzag ordering (without introducing unrealistically large longer-range Heisenberg exchange terms) and the special entanglement between real and spin space observed recently in Na\(_2\)IrO\(_3\). Moreover, the minimal K\(_1\) - K\(_2\) model that we present here holds the unique property that the classical and quantum phase diagrams and their respective order-by-disorder mechanisms are qualitatively different due to the fundamentally different symmetries of the classical and quantum counterparts.}, language = {en} } @article{EbertBenischKrugetal.2015, author = {Ebert, Regina and Benisch, Peggy and Krug, Melanie and Zeck, Sabine and Meißner-Weigl, Jutta and Steinert, Andre and Rauner, Martina and Hofbauer, Lorenz and Jakob, Franz}, title = {Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells}, series = {Stem Cell Research}, volume = {15}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2015.06.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148491}, pages = {231-239}, year = {2015}, abstract = {The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation andmineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1\(\beta\), CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis.}, language = {en} } @article{AndreattaPauli2015, author = {Andreatta, Marta and Pauli, Paul}, title = {Appetitive vs. aversive conditioning in humans}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {128}, doi = {10.3389/fnbeh.2015.00128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148614}, year = {2015}, abstract = {In classical conditioning, an initially neutral stimulus (conditioned stimulus, CS) becomes associated with a biologically salient event (unconditioned stimulus, US), which might be pain (aversive conditioning) or food (appetitive conditioning). After a few associations, the CS is able to initiate either defensive or consummatory responses, respectively. Contrary to aversive conditioning, appetitive conditioning is rarely investigated in humans, although its importance for normal and pathological behaviors (e.g., obesity, addiction) is undeniable. The present study intents to translate animal findings on appetitive conditioning to humans using food as an US. Thirty-three participants were investigated between 8 and 10 am without breakfast in order to assure that they felt hungry. During two acquisition phases, one geometrical shape (avCS+) predicted an aversive US (painful electric shock), another shape (appCS+) predicted an appetitive US (chocolate or salty pretzel according to the participants' preference), and a third shape (CS) predicted neither US. In a extinction phase, these three shapes plus a novel shape (NEW) were presented again without US delivery. Valence and arousal ratings as well as startle and skin conductance (SCR) responses were collected as learning indices. We found successful aversive and appetitive conditioning. On the one hand, the avCS+ was rated as more negative and more arousing than the CS and induced startle potentiation and enhanced SCR. On the other hand, the appCS+ was rated more positive than the CS and induced startle attenuation and larger SCR. In summary, we successfully confirmed animal findings in (hungry) humans by demonstrating appetitive learning and normal aversive learning.}, language = {en} }