@phdthesis{Rosenbaum2016, author = {Rosenbaum, Corinna}, title = {The role of enteric glial cells under inflammatory conditions of the intestine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138946}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The enteric nervous system (ENS) innervates the gastrointestinal (GI) tract and controls central aspects of GI physiology including contractility of the intestinal musculature, glandular secretion and intestinal blood flow. The ENS is composed of neurons that conduct electrical signals and of enteric glial cells (EGCs). EGCs resemble central nervous system (CNS) astrocytes in their morphology and in the expression of shared markers such as the intermediate filament protein glial fibrillary acidic protein (GFAP). They are strategically located at the interface of ENS neurons and their effector cells to modulate intestinal motility, epithelial barrier stability and inflammatory processes. The specific contributions of EGCs to the maintenance of intestinal homeostasis are subject of current research. From a clinical point of view EGC involvement in pathophysiological processes such as intestinal inflammation is highly relevant. Like CNS astrocytes ECGs can acquire a reactive, tissue-protective phenotype in response to intestinal injury. In patients with chronic inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis, alterations in the EGC network are well known, particularly a differential expression of GFAP, which is a hallmark of reactive gliosis in the CNS. With increasing recognition of the role of EGCs in intestinal health and disease comes the need to study the glial population in its complexity. The overall aim of this thesis was to comprehensively study EGCs with focus on the reactive GFAP-expressing subpopulation under inflammatory conditions in vivo and in vitro. In a first step, a novel in vivo rat model of acute systemic inflammation mimicking sepsis was employed to investigate rapidly occuring responses of EGCs to inflammation. This study revealed that within a short time frame of a few hours, EGCs responded to the inflammation with an upregulation of Gfap gene expression. This inflammation-induced upregulation was confined to the myenteric plexus and varied in intensity along the intestinal rostro-caudal axis. This highly responsive myenteric GFAP-expressing EGC population was further characterized in vivo andin vitro using a transgenic mouse model (hGFAP-eGFP mice). Primary purified murine GFAP-EGC cultures in vitro were established and it was assessed how the transcriptomic and proteomic profiles of these cells change upon inflammatory stimulation. Here, myenteric GFAP-EGCs were found to undergo a shift in gene expression profile that predominantly affects expression of genes associated with inflammatory responses. Further, a secretion of inflammatory mediators was validated on protein level. The GFAP+ subpopulation is hence an active participant in inflammatory pathophysiology. In an acute murine IBD model in vivo, GFAP-EGCs were found to express components of the major histocompatibility complex (MHC) class II in inflamed tissue, which also indicates a crosstalk of EGCs with the innate and the adaptive lamina propria immune system in acute inflammation. Taken together, this work advances our knowledge on EGC (patho-)physiology by identifying and characterizing an EGC subpopulation rapidly responsive to inflammation. This study further provides the transcriptomic profile of this population in vivo and in vitro, which can be used to identify targets for therapeutic intervention. Due to the modulating influence of EGCs on the intestinal microenvironment, the study further underlines the importance of integrating EGCs into in vitro test systems that aim to model intestinal tissues in vitro and presents an outlook on a potential strategy.}, subject = {Darmwandnervensystem}, language = {en} }