@phdthesis{Ibrahim2024, author = {Ibrahim, Eslam Samir Ragab}, title = {Unraveling the function of the old yellow enzyme OfrA in \(Staphylococcus\) \(aureus\) stress response}, doi = {10.25972/OPUS-28960}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289600}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Biological systems are in dynamic interaction. Many responses reside in the core concepts of biological systems interplay (competition and cooperation). In infection situation, the competition between a bacterial system and a host is shaped by many stressors at spatial and temporal determinants. Reactive chemical species are universal stressors against all biological systems since they potentially damage the basic requirements of these systems (nucleic acids, proteins, carbohydrates, and lipids). Either produced endogenously or exogenously, reactive chemical species affect the survival of pathogens including the gram-positive Staphylococcus aureus (S. aureus). Therefore, bacteria developed strategies to overcome the toxicity of reactive species. S. aureus is a widely found opportunistic pathogen. In its niche, S. aureus is in permanent contact with surrounding microbes and host factors. Deciphering the deterministic factors in these interactions could facilitate pinpointing novel bacterial targets. Identifying the aforementioned targets is crucial to develop new strategies not only to kill the pathogenic organisms but also to enhance the normal flora to minimize the pathogenicity and virulence of potential pathogens. Moreover, targeting S. aureus stress response can be used to overcome bacterial resistance against host-derived factors. In this study, I identify a novel S. aureus stress response factor against reactive electrophilic, oxygen, and hypochlorite species to better understand its resilience as a pathogen. Although bacterial stress response is an active research field, gene function is a current bottleneck in characterizing the understudied bacterial strategies to mediate stress conditions. I aimed at understanding the function of a novel protein family integrated in many defense systems of several biological systems. In bacteria, fungi, and plants, old yellow enzymes (OYEs) are widely found. Since the first isolation of the yellow flavoprotein, OYEs are used as biocatalysts for decades to reduce activated C=C bonds in α,β-unsaturated carbonyl compounds. The promiscuity of the enzymatic catalysis is advantageous for industrial applications. However, the physiological function of OYEs, especially in bacteria, is still puzzling. Moreover, the relevance of the OYEs in infection conditions remained enigmatic.   Here, I show that there are two groups of OYEs (OYE flavin oxidoreductase, OfrA and OfrB) that are encoded in staphylococci and some firmicutes. OfrA (SAUSA300_0859) is more conserved than OfrB (SAUSA300_0322) in staphylococci and is a part of the staphylococcal core genome. A reporter system was established to report for ofrA in S. aureus background. The results showed that ofrA is induced under electrophilic, oxidative, and hypochlorite stress. OfrA protects S. aureus against quinone, methylglyoxal, hydrogen peroxide, and hypochlorite stress. Additionally, the results provide evidence that OfrA supports thiol-dependent redox homeostasis. At the host-pathogen interface, OfrA promotes S. aureus fitness in murine macrophage cell line. In whole human blood, OfrA is involved in S. aureus survival indicating a potential clinical relevance to bacteraemia. In addition, ofrA mutation affects the production of the virulence factor staphyloxanthin via the upper mevalonate pathway. In summary, decoding OfrA function and its proposed mechanism of action in S. aureus shed the light on a conserved stress response within multiple organisms.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Hoer2020, author = {H{\"o}r, Jens}, title = {Discovery of RNA/protein complexes by Grad-seq}, doi = {10.25972/OPUS-21181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211811}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Complex formation between macromolecules constitutes the foundation of most cellular processes. Most known complexes are made up of two or more proteins interacting in order to build a functional entity and therefore enabling activities which the single proteins could otherwise not fulfill. With the increasing knowledge about noncoding RNAs (ncRNAs) it has become evident that, similar to proteins, many of them also need to form a complex to be functional. This functionalization is usually executed by specific or global RNA-binding proteins (RBPs) that are specialized binders of a certain class of ncRNAs. For instance, the enterobacterial global RBPs Hfq and ProQ together bind >80 \% of the known small regulatory RNAs (sRNAs), a class of ncRNAs involved in post-transcriptional regulation of gene expression. However, identification of RNA-protein interactions so far was performed individually by employing low-throughput biochemical methods and thereby hindered the discovery of such interactions, especially in less studied organisms such as Gram-positive bacteria. Using gradient profiling by sequencing (Grad-seq), the present thesis aimed to establish high-throughput, global RNA/protein complexome resources for Escherichia coli and Streptococcus pneumoniae in order to provide a new way to investigate RNA-protein as well as protein-protein interactions in these two important model organisms. In E. coli, Grad-seq revealed the sedimentation profiles of 4,095 (∼85 \% of total) transcripts and 2,145 (∼49 \% of total) proteins and with that reproduced its major ribonucleoprotein particles. Detailed analysis of the in-gradient distribution of the RNA and protein content uncovered two functionally unknown molecules—the ncRNA RyeG and the small protein YggL—to be ribosomeassociated. Characterization of RyeG revealed it to encode for a 48 aa long, toxic protein that drastically increases lag times when overexpressed. YggL was shown to be bound by the 50S subunit of the 70S ribosome, possibly indicating involvement of YggL in ribosome biogenesis or translation of specific mRNAs. S. pneumoniae Grad-seq detected 2,240 (∼88 \% of total) transcripts and 1,301 (∼62 \% of total) proteins, whose gradient migration patterns were successfully reconstructed, and thereby represents the first RNA/protein complexome resource of a Gram-positive organism. The dataset readily verified many conserved major complexes for the first time in S. pneumoniae and led to the discovery of a specific interaction between the 3'!5' exonuclease Cbf1 and the competence-regulating ciadependent sRNAs (csRNAs). Unexpectedly, trimming of the csRNAs by Cbf1 stabilized the former, thereby promoting their inhibitory function. cbf1 was further shown to be part of the late competence genes and as such to act as a negative regulator of competence.}, subject = {Multiproteinkomplex}, language = {en} } @article{UllmannSchmidtHieberBertzetal.2016, author = {Ullmann, Andrew J. and Schmidt-Hieber, Martin and Bertz, Hartmut and Heinz, Werner J. and Kiehl, Michael and Kr{\"u}ger, William and Mousset, Sabine and Neuburger, Stefan and Neumann, Silke and Penack, Olaf and Silling, Gerda and Vehreschild, J{\"o}rg Janne and Einsele, Hermann and Maschmeyer, Georg}, title = {Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016}, series = {Annals of Hematology}, volume = {95}, journal = {Annals of Hematology}, number = {9}, organization = {Infectious Diseases Working Party of the German Society for Hematology and Medical Oncology (AGIHO/DGHO) and the DAG-KBT (German Working Group for Blood and Marrow Transplantation)}, doi = {10.1007/s00277-016-2711-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187587}, pages = {1435-1455}, year = {2016}, abstract = {Infectious complications after allogeneic haematopoietic stem cell transplantation (allo-HCT) remain a clinical challenge. This is a guideline provided by the AGIHO (Infectious Diseases Working Group) of the DGHO (German Society for Hematology and Medical Oncology). A core group of experts prepared a preliminary guideline, which was discussed, reviewed, and approved by the entire working group. The guideline provides clinical recommendations for the preventive management including prophylactic treatment of viral, bacterial, parasitic, and fungal diseases. The guideline focuses on antimicrobial agents but includes recommendations on the use of vaccinations. This is the updated version of the AGHIO guideline in the field of allogeneic haematopoietic stem cell transplantation utilizing methods according to evidence-based medicine criteria.}, language = {en} } @phdthesis{Bischler2018, author = {Bischler, Thorsten David}, title = {Data mining and software development for RNA-seq-based approaches in bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {RNA sequencing (RNA-seq) has in recent years become the preferred method for gene expression analysis and whole transcriptome annotation. While initial RNA-seq experiments focused on eukaryotic messenger RNAs (mRNAs), which can be purified from the cellular ribonucleic acid (RNA) pool with relative ease, more advanced protocols had to be developed for sequencing of microbial transcriptomes. The resulting RNA-seq data revealed an unexpected complexity of bacterial transcriptomes and the requirement for specific analysis methods, which in many cases is not covered by tools developed for processing of eukaryotic data. The aim of this thesis was the development and application of specific data analysis methods for different RNA-seq-based approaches used to gain insights into transcription and gene regulatory processes in prokaryotes. The differential RNA sequencing (dRNA-seq) approach allows for transcriptional start site (TSS) annotation by differentiating between primary transcripts with a 5'-triphosphate (5'-PPP) and processed transcripts with a 5'-monophosphate (5'-P). This method was applied in combination with an automated TSS annotation tool to generate global trancriptome maps for Escherichia coli (E. coli) and Helicobacter pylori (H. pylori). In the E. coli study we conducted different downstream analyses to gain a deeper understanding of the nature and properties of transcripts in our TSS map. Here, we focused especially on putative antisense RNAs (asRNAs), an RNA class transcribed from the opposite strand of known protein-coding genes with the potential to regulate corresponding sense transcripts. Besides providing a set of putative asRNAs and experimental validation of candidates via Northern analysis, we analyzed and discussed different sources of variation in RNA-seq data. The aim of the H. pylori study was to provide a detailed description of the dRNA-seq approach and its application to a bacterial model organism. It includes information on experimental protocols and requirements for data analysis to generate a genome-wide TSS map. We show how the included TSS can be used to identify and analyze transcriptome and regulatory features and discuss challenges in terms oflibrary preparation protocols, sequencing platforms, and data analysis including manual and automated TSS annotation. The TSS maps and associated transcriptome data from both H. pylori and E. coli were made available for visualization in an easily accessible online browser. Furthermore, a modified version of dRNA-seq was used to identify transcriptome targets of the RNA pyrophosphohydrolase (RppH) in H. pylori. RppH initiates 5'-end-dependent degradation of transcripts by converting the 5'-PPP of primary transcripts to a 5'-P. I developed an analysis method, which uses data from complementary DNA (cDNA) libraries specific for transcripts carrying a 5'-PPP, 5'-P or both, to specifically identify transcripts modified by RppH. For this, the method assessed the 5'-phosphorylation state and cellular concentration of transcripts in rppH deletion in comparison to strains with the intact gene. Several of the identified potential RppH targets were further validated via half-life measurements and quantification of their 5'-phosphorylation state in wild-type and mutant cells. Our findings suggest an important role for RppH in post-transcriptional gene regulationin H. pylori and related organisms. In addition, we applied two RNA-seq -based approaches, RNA immunoprecipitation followed by sequencing (RIP-seq) and cross-linking immunoprecipitation followed by sequencing (CLIP-seq), to identify transcripts bound by Hfq and CsrA, two RNA-binding proteins (RBPs) with an important role in post-transcriptional regulation. For RIP-seq -based identification of CsrA binding regions in Campylobacter jejuni(C. jejuni), we used annotation-based analysis and, in addition, a self-developed peak calling method based on a sliding window approach. Both methods revealed flaA mRNA, encoding the major flagellin, as the main target and functional analysis of identified targets showed a significant enrichment of genes involved in flagella biosynthesis. Further experimental analysis revealed the role of flaA mRNA in post-transcriptional regulation. In comparison to RIP-seq, CLIP-seq allows mapping of RBP binding sites with a higher resolution. To identify these sites an approach called "block-based peak calling" was developed and resulting peaks were used to identify sequence and structural constraints required for interaction of Hfq and CsrA with Salmonella transcripts. Overall, the different RNA-seq-based approaches described in this thesis together with their associated analyis pipelines extended our knowledge on the transcriptional repertoire and modes of post-transcriptional regulation in bacteria. The global TSS maps, including further characterized asRNA candidates, putative RppH targets, and identified RBP interactomes will likely trigger similar global studies in the same or different organisms or will be used as a resource for closer examination of these features.}, subject = {Bakterien}, language = {en} } @phdthesis{Horn2017, author = {Horn, Hannes}, title = {Analysis and interpretation of (meta-)genomic data from host-associated microorganisms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Host-microbe interactions are the key to understand why and how microbes inhabit specific environments. With the scientific fields of microbial genomics and metagenomics, evolving on an unprecedented scale, one is able to gain insights in these interactions on a molecular and ecological level. The goal of this PhD thesis was to make (meta-)genomic data accessible, integrate it in a comparative manner and to gain comprehensive taxonomic and functional insights into bacterial strains and communities derived from two different environments: the phyllosphere of Arabidopsis thaliana and the mesohyl interior of marine sponges. This thesis focused first on the de novo assembly of bacterial genomes. A 5-step protocol was developed, each step including a quality control. The examination of different assembly software in a comparative way identified SPAdes as most suitable. The protocol enables the user to chose the best tailored assembly. Contamination issues were solved by an initial filtering of the data and methods normally used for the binning of metagenomic datasets. This step is missed in many published assembly pipelines. The described protocol offers assemblies of high quality ready for downstream analysis. Subsequently, assemblies generated with the developed protocol were annotated and explored in terms of their function. In a first study, the genome of a phyllosphere bacterium, Williamsia sp. ARP1, was analyzed, offering many adaptions to the leaf habitat: it can deal with temperature shifts, react to oxygen species, produces mycosporins as protection against UV-light, and is able to uptake photosynthates. Further, its taxonomic position within the Actinomycetales was infered from 16S rRNA and comparative genomics showing the close relation between the genera Williamsia and Gordonia. In a second study, six sponge-derived actinomycete genomes were investigated for secondary metabolism. By use of state-of-the-art software, these strains exhibited numerous gene clusters, mostly linked to polykethide synthases, non-ribosomal peptide synthesis, terpenes, fatty acids and saccharides. Subsequent predictions on these clusters offered a great variety of possible produced compounds with antibiotic, antifungal or anti-cancer activity. These analysis highlight the potential for the synthesis of natural products and the use of genomic data as screening toolkit. In a last study, three sponge-derived and one seawater metagenomes were functionally compared. Different signatures regarding the microbial composition and GC-distribution were observed between the two environments. With a focus on bacerial defense systems, the data indicates a pronounced repertoire of sponge associated bacteria for bacterial defense systems, in particular, Clustered Regularly Interspaced Short Palindromic Repeats, restriction modification system, DNA phosphorothioation and phage growth limitation. In addition, characterizing genes for secondary metabolite cluster differed between sponge and seawater microbiomes. Moreover, a variety of Type I polyketide synthases were only found within the sponge microbiomes. With that, metagenomics are shown to be a useful tool for the screening of secondary metabolite genes. Furthermore, enriched defense systems are highlighted as feature of sponge-associated microbes and marks them as a selective trait.}, subject = {Bakterien}, language = {en} } @phdthesis{MoitinhoeSilva2014, author = {Moitinho e Silva, Lucas}, title = {Exploration of microbial diversity and function in Red Sea sponges by deep sequencing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103836}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Marine sponges (phylum Porifera) are simple, sessile, filter-feeder animals. Microbial symbionts are commonly found in the sponge internal tissue, termed the mesohyl. With respect to the microbial content, sponges are classified as either low-microbial abundance sponges (LMA), or high-microbial abundance sponges (HMA). The HMA/LMA dichotomy was explored in this Thesis using the Red Sea sponges as experimental models. A range of methods encompassing transmission electron microscopy, 16S rRNA gene deep sequencing, and metatranscriptomics was employed towards this goal. Here, particular emphasis was placed on the functional analysis of sponge microbiomes. The Red Sea sponges Stylissa carteri, Xestospongia testudinaria, Amphimedon ochracea, and Crella cyathophora were classified as HMA or LMA sponges using transmission electron microscopy. The diversity, specificity, and transcriptional activity of microbes associated with the sponges S. carteri (LMA) and X. testudinaria (HMA) and seawater were investigated using 16S rRNA amplicon pyrosequencing. The microbial composition of S. carteri was more similar to that of seawater than to that of X. testudinaria, which is consistent with the observation that the sequence data set of S. carteri contained many more possibly seawater sequences (~24\%) than the X. testudinaria data set (~6\%). The most abundant operational taxonomic units (OTUs) were shared between all three sources (S. carteri, X. testudinaria, seawater), while rare OTUs were unique to any given source. Despite this high degree of overlap, each sponge species contained its own specific microbiota. S. carteri microbiomes were enriched of Gammaproteobacteria and members of the genus Synechococcus and Nitrospira. Enriched members of X. testudinaria microbiomes included Chloroflexi, Deferribacteres, and Actinobacteria. The transcriptional activity of sponge-associated microorganisms was assessed by comparing 16S rRNA gene with transcript amplicons, which showed a good correlation. The microbial functional gene repertoire of sponges and seawater from the Red Sea (X. testudinaria, S. carteri) and the Mediterranean (Aplysina aerophoba, Dysidea avara) were investigated with the environmental microarray GeoChip 4. Amplicon sequencing was performed alongside in order to assess microbial diversity. The typical microbial diversity patterns characteristic of HMA (abundance of Gammaproteobacteria, Chloroflexi, Acidobacteria, Deferribacteres, and others) and LMA sponges (abundance of Alpha-, Beta-, Gammaproteobacteria, Cyanobacteria, and Bacteroidetes) were confirmed. The HMA/LMA dichotomy was stronger than any possible geographic pattern based on microbial diversity (amplicon) and functional genes (GeoChip). However upon inspection of individual genes detected by GeoChip, very few specific differences were discernible, including differences related to microbial ammonia oxidation, ammonification (higher gene abundance in sponges over seawater) as well as denitrification (lower gene abundance). Furthermore, a higher abundance of a gene, pcc, representative of archaeal autotrophic carbon fixation was noted in sponges over seawater. Thirdly, stress-related genes, in particular those related to radiation, were found in lower abundances in sponge microbiomes than in seawater. With the exception of few documented specific differences, the functional gene repertoire between the different sources appeared largely similar. The most actively expressed genes of S. carteri microbiomes were investigated with metatranscriptomics. Prokaryotic mRNA was enriched from sponge total RNA, sequenced using Illumina HiSeq technology, and annotated with the metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline. High expression of archaeal ammonia oxidation and photosynthetic carbon fixation by members of the genus Synechococcus was detected. Functions related to stress response and membrane transporters were among the most highly expressed by S. carteri symbionts. Unexpectedly, gene functions related to methylotrophy were highly expressed by gammaproteobacterial symbionts. The presence of seawater-derived microbes is indicated by the phylogenetic proximity of organic carbon transporters to orthologs of members from the SAR11 clade. In summary, the most expressed functions of the S. carteri-associated microbial community were revealed and linked to the dominant taxonomic members of the microbiome. In conclusion, HMA and LMA Red Sea sponges were used as models to gain insights into relevant themes in sponge microbiology, i.e. diversity, specificity, and functional activities. Overall, my Thesis contributes to a better understanding of sponge-associated microbial communities, and the implications of this association to marine ecology.}, subject = {Meeresschw{\"a}mme}, language = {en} } @phdthesis{Kamke2013, author = {Kamke, Janine}, title = {Single-cell genomics of the candidate phylum Poribacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85042}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Marine sponges are the most ancient metazoans and of large ecological importance as drivers of water and nutrient flows in benthic habitats. Furthermore marine sponges are well known for their association with highly abundant and diverse microbial consortia. Microorganisms inhabit the extracellular matrix of marine sponges where they can make up to 35\% of the sponge's biomass. Many microbial symbionts of marine sponges are highly host specific and cannot, or only in very rare abundances, be found outside of their host environment. Of special interest is the candidate phylum Poribacteria that was first discovered in marine sponges and still remains almost exclusive to their hosts. Phylogenetically Poribacteria were placed into the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum and similarly to many members of this superphylum cell compartmentation has been proposed to occur in members of the Poribacteria. The status as a candidate phylum implies that no member of Poribacteria has been obtained in culture yet. This restricts the investigations of Poribacteria and their interactions with marine sponges to culture independent methods and makes functional characterisation a difficult task. In this PhD thesis I used the novel method of single-cell genomics to investigate the genomic potential of the candidate phylum Poribacteria. Single-cell genomics enables whole genome sequencing of uncultivated microorganisms by singularising cells from the environment, subsequent cell lysis and multiple displacement amplification of the total genomic DNA. This process yields sufficient amounts of DNA for whole genome sequencing and genome analysis. This technique and its relevance for symbiosis studies are discussed in this PhD thesis. Through the application of single-cell genomics it was possible to increase the number of single-amplified genomes of the candidate phylum Poribacteria from initially one to a total of six. Analyses of these datasets made it possible to enhance our understanding of the metabolism, taxonomy, and phylum diversity of Poribacteria and thus made these one of the best-characterised sponge symbionts today. The poribacterial genomes represented three phylotypes within the candidate phylum of which one appeared dominant. Phylogenetic and phylogenomic analyses revealed a novel phylogenetic positioning of Poribacteria distinctly outside of the Planctomycete, Verrucomicorbia, Chlamydiae superphylum. The occurrence of cell compartmentation in Poribacteria was also revisited based on the obtained genome sequences and revealed evidence for bacterial microcompartments instead of the previously suggested nucleotide-like structures. An extensive genomic repertoire of glycoside hydrolases, glycotransferases, and other carbohydrate active enzymes was found to be the central shared feature between all poribacterial genomes and showed that Poribacteria are among those marine bacteria with the largest genomic repertoire for carbohydrate degradation. Detailed analysis of the carbohydrate metabolism revealed that Poribacteria have the genomic potential for degradation of a variety of polymers, di- and monosaccharaides that allow these symbionts to feed various nutrient sources accessible through the filter-feeding activities of the sponge host. Furthermore the poribacterial glycobiome appeared to enable degradation of glycosaminoglycan chains, one of the main building blocks of extracellular matrix of marine sponges. Different lifestyles resulting from the poribacterial carbohydrate degradation potential are discussed including the influence of nutrient cycling in sponges, nutrient recycling and scavenging. The findings of this thesis emphasise the long overlooked importance of heterotrophic symbionts such as Poribacteria for the interactions with marine sponges and represent a solid basis for future studies of the influence heterotrophic symbionts have on their sponge hosts.}, subject = {Bakterien}, language = {en} } @phdthesis{Angermeier2011, author = {Angermeier, Hilde Gabriele}, title = {Molecular and ecological investigations of Caribbean sponge diseases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56855}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {W{\"a}hrend gewinnbringende Assoziationen von Schw{\"a}mmen mit Mikroorganismen in den letzten Jahren viel Aufmerksamkeit erhalten haben, wurde weit weniger in die Interaktion von Schw{\"a}mmen mit m{\"o}glicherweise pathogenen Mikroben investiert. Somit war es das Ziel dieser Studie zwei ausgew{\"a}hlte Karibische Schwammkrankheiten namens „Sponge Orange Band" und „Sponge White Patch" mittels {\"o}kologischer und molekularer Methoden zu untersuchen. Die Sponge Orange Band (SOB) Erkrankung bef{\"a}llt den bedeutenden karibischen Fass-Schwamm Xestospongia muta, der zu den bakterienhaltigen (HMA) Schw{\"a}mmen gez{\"a}hlt wird, w{\"a}hrend die Sponge White Patch (SWP) Erkrankung den h{\"a}ufig vorkommenden Seil-Schwamm Amphimedon compressa betrifft, der zu den bakterienarmen (LMA) Schw{\"a}mmen geh{\"o}rt. F{\"u}r beide Karibischen Schwammkrankheiten konnte ich einen Krankheitsverlauf beschreiben, der mit massiver Gewebszerst{\"o}rung und dem Verlust charakteristischer mikrobieller Signaturen einhergeht. Obwohl ich zeigen konnte, dass zus{\"a}tzliche Bakterienarten die gebleichten Schwammbereiche kolonisieren, lieferten meine Infektionsversuche in beiden F{\"a}llen keinen Beweis f{\"u}r die Beteiligung eines mikrobiellen Pathogens als Krankheitserreger. Somit liegen die eigentlichen Ausl{\"o}ser der Erkrankungen Sponge Orange Band als auch Sponge White Patch noch immer im Dunkeln.}, subject = {Meeresschw{\"a}mme}, language = {en} }