@phdthesis{Karwen2024, author = {Karwen, Till}, title = {Platelets promote insulin secretion of pancreatic β-cells}, doi = {10.25972/OPUS-31393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313933}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators. Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis. Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals.}, subject = {Thrombozyt}, language = {en} } @phdthesis{ZimmermannneePapp2024, author = {Zimmermann [n{\´e}e Papp], Lena}, title = {Platelets as modulators of blood-brain barrier disruption and inflammation in the pathophysiology of ischemic stroke}, doi = {10.25972/OPUS-30285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ischemia-reperfusion injury (I/R injury) is a common complication in ischemic stroke (IS) treatment, which is characterized by a paradoxical perpetuation of tissue damage despite the successful re-establishment of vascular perfusion. This phenomenon is known to be facilitated by the detrimental interplay of platelets and inflammatory cells at the vascular interface. However, the spatio-temporal and molecular mechanisms underlying these cellular interactions and their contribution to infarct progression are still incompletely understood. Therefore, this study intended to clarify the temporal mechanisms of infarct growth after cerebral vessel recanalization. The data presented here could show that infarct progression is driven by early blood-brain-barrier perturbation and is independent of secondary thrombus formation. Since previous studies unravelled the secretion of platelet granules as a molecular mechanism of how platelets contribute to I/R injury, special emphasis was placed on the role of platelet granule secretion in the process of barrier dysfunction. By combining an in vitro approach with a murine IS model, it could be shown that platelet α-granules exerted endothelial-damaging properties, whereas their absence (NBEAL2-deficiency) translated into improved microvascular integrity. Hence, targeting platelet α-granules might serve as a novel treatment option to reduce vascular integrity loss and diminish infarct growth despite recanalization. Recent evidence revealed that pathomechanisms underlying I/R injury are already instrumental during large vessel occlusion. This indicates that penumbral tissue loss under occlusion and I/R injury during reperfusion share an intertwined relationship. In accordance with this notion, human observational data disclosed the presence of a neutrophil dominated immune response and local platelet activation and secretion, by the detection of the main components of platelet α-granules, within the secluded vasculature of IS patients. These initial observations of immune cells and platelets could be further expanded within this thesis by flow cytometric analysis of local ischemic blood samples. Phenotyping of immune cells disclosed a yet unknown shift in the lymphocyte population towards CD4+ T cells and additionally corroborated the concept of an immediate intravascular immune response that is dominated by granulocytes. Furthermore, this thesis provides first-time evidence for the increased appearance of platelet-leukocyte-aggregates within the secluded human vasculature. Thus, interfering with immune cells and/or platelets already under occlusion might serve as a potential strategy to diminish infarct expansion and ameliorate clinical outcome after IS.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Brown2023, author = {Brown, Helena Charlotte}, title = {Investigating the role of the platelet receptor C-type lectin-like receptor 2 in models of thrombosis}, doi = {10.25972/OPUS-29310}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Platelets have a key physiological role in haemostasis however, inappropriate thrombus formation can lead to cardiovascular diseases such as myocardial infarction or stroke. Although, such diseases are common worldwide there are comparatively few anti-platelet drugs, and these are associated with an increased risk of bleeding. Platelets also have roles in thrombo-inflammation, immuno-thrombosis and cancer, in part via C-type lectin-like receptor 2 (CLEC-2) and its ligand podoplanin. Although CLEC-2 contributes to these diseases in mice, as well as to thrombus stability, it is unclear whether CLEC-2 has similar roles in humans, particularly as human CLEC-2 (hCLEC-2) cannot be investigated experimentally in vivo. To investigate hCLEC-2 in vivo, we generated a humanised CLEC-2 mouse (hCLEC-2KI) model, as well as a novel monoclonal antibody, HEL1, that binds to a different site than an existing antibody, AYP1. Using these antibodies, we have provided proof of principle for the use of hCLEC-2KI mice to test potential therapeutics targeting hCLEC-2, and shown for the first time that hCLEC-2 can be immunodepleted, with little effect on haemostasis. However, our results have also suggested that there are species differences in the role of CLEC-2 in arterial thrombosis. We further confirmed this using human blood where blocking CLEC-2 ligand binding had no effect on thrombosis, whereas we confirmed a minor role for mouse CLEC-2 in thrombus stability. We also investigated the effect of blocking CLEC-2 signalling using the Bruton's tyrosine kinase inhibitor PRN473 on CLEC-2 mediated immuno-thrombosis in a Salmonella typhimurium infection model. However, no effect on thrombosis was observed suggesting that CLEC-2 signalling is not involved. Overall, our results suggest that there may be differences in the role of human and mouse CLEC-2, at least in arterial thrombosis, which could limit the potential of CLEC-2 as an anti-thrombotic target. However, it appears that the interaction between CLEC-2 and podoplanin is conserved and therefore CLEC-2 could still be a therapeutic target in immuno-thrombosis, thrombo-inflammation and cancer. Furthermore, any potential human specific therapeutics could be investigated in vivo using hCLEC-2KI mice.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Mott2023, author = {Mott, Kristina}, title = {Regulation of platelet biogenesis in the native and myeloablated bone marrow niche}, doi = {10.25972/OPUS-28963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Megakaryocytes (MKs) are the largest cells of the hematopoietic system and the precursor cells of platelets. During proplatelet formation (PPF) bone marrow (BM) MKs extent large cytoplasmic protrusions into the lumen of sinusoidal blood vessels. Under homeostatic conditions PPF occurs exclusively in the direction of the sinusoid, while platelet generation into the marrow cavity is prevented. So far, the mechanisms regulating this process in vivo are still not completely understood, especially when PPF is deregulated during disease. This thesis investigated the mechanisms of PPF in native BM and after myeloablation by total body irradiation (TBI). First, we have identified a specialized type of BM stromal cells, so called CXCL12-abundant reticular (CAR) cells, as novel possible regulators of PPF. By using complementary high-resolution microscopy techniques, we have studied the morphogenetic events at the MK/vessel wall interface in new detail, demonstrating that PPF formation preferentially occurs at CAR cell-free sites at the endothelium. In the second part of this thesis, we analyzed the processes leading to BM remodeling in response to myeloablation by TBI. We used confocal laser scanning microscopy (CLSM) to study the kinetic of radiation-triggered vasodilation and mapped extracellular matrix (ECM) proteins after TBI. We could demonstrate that collagen type IV and laminin α5 are specifically degraded at BM sinusoids. At the radiation-injured vessel wall we observed ectopic release of platelet-like particles into the marrow cavity concomitantly to aberrant CAR cell morphology, suggesting that the balance of factors regulating PPF is disturbed after TBI. ECM proteolysis is predominantly mediated by the matrix metalloproteinase MMP9, as revealed by gelatin-zymography and by a newly established BM in situ zymography technique. In transgenic mice lacking MMP9 vascular recovery was delayed, hinting towards a role of MMP9 in vessel reconstitution after myeloablation. In a third series of experiments, we studied the irradiated BM in the context of hematopoietic stem cell transplantation (HSCT). By using mice as BM donors that ubiquitously express the fluorescent reporter protein dsRed we tracked engraftment of donor cells and especially MKs in the recipient BM. We found a distinct engraftment pattern and cluster formation for MKs, which is different from other blood cell lineages. Finally, we assessed platelet function after TBI and HSCT and were the first to demonstrate that platelets become massively hyporeactive, particularly upon stimulation of the collagen receptor GPVI. In summary, our findings shed light on the processes of PPF during health and disease which will help to develop treatments for aberrant thrombopoiesis.}, subject = {Knochenmark}, language = {en} } @phdthesis{Baumann2023, author = {Baumann, Juliane}, title = {Studies on the influence of mutations in the Myh9 gene on platelet function}, doi = {10.25972/OPUS-28795}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287953}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The platelet cytoskeleton ensures normal size and discoid shape under resting conditions and undergoes immediate reorganization in response to changes in the extracellular environment through integrin-based adhesion sites, resulting in actomyosin-mediated contractile forces. Mutations in the contractile protein non-muscle myosin heavy chain IIA display, among others, macrothrombocytopenia and a mild to moderate bleeding tendency in human patients. It is insufficiently understood which factors contribute to the hemostatic defect found in MYH9-related disease patients. Therefore, a better understanding of the underlying biophysical mechanisms in thrombus formation and stabilization is warranted. This thesis demonstrates that an amino acid exchange at the positions 702, 1424 and 1841 in the heavy chain of the contractile protein non-muscle myosin IIA, caused by heterozygous point mutations in the gene, resulted in macrothrombocytopenia and increased bleeding in mice, reflecting the clinical hallmark of the MYH9-related disease in human patients. Basic characterization of biological functions of Myh9 mutant platelets revealed overall normal surface glycoprotein expression and agonist-induced activation when compared to wildtype platelets. However, myosin light chain phosphorylation after thrombin-activation was reduced in mutant platelets, resulting in less contractile forces and a defect in clot retraction. Altered biophysical characteristics with lower adhesion and interaction forces of Myh9 mutant platelets led to reduced thrombus formation and stability. Platelets from patients with the respective mutations recapitulated the findings obtained with murine platelets, such as impaired thrombus formation and stiffness. Besides biological and biophysical characterization of mutant platelets from mice and men, treatment options were investigated to prevent increased bleeding caused by reduced platelet forces. The antifibrinolytic agent tranexamic acid was applied to stabilize less compact thrombi, which are presumably more vulnerable to fibrinolysis. The hemostatic function in Myh9 mutant mice was improved by interfering with the fibrinolytic system. These results show the beneficial effect of fibrin stabilization to reduce bleeding in MYH9-related disease.}, subject = {Thrombozyt}, language = {en} } @phdthesis{GoebneeKlaus2023, author = {G{\"o}b [n{\´e}e Klaus], Vanessa Aline Domenica}, title = {Pathomechanisms underlying ischemic stroke}, doi = {10.25972/OPUS-28672}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Every year, stroke affects over 100 million people worldwide and the number of cases continues to grow. Ischemic stroke is the most prevalent form of stroke and rapid restoration of blood flow is the primary therapeutic aim. However, recanalization might fail or reperfusion itself induces detrimental processes leading to infarct progression. Previous studies identified platelets and immune cells as drivers of this so-called ischemia/reperfusion (I/R) injury, establishing the concept of ischemic stroke as thrombo-inflammatory disease. Reduced cerebral blood flow despite recanalization promoted the hypothesis that thrombus formation within the cerebral microcirculation induces further tissue damage. The results presented in this thesis refute this: using complementary methodologies, it was shown that infarct growth precedes the occurrence of thrombi excluding them as I/R injury-underlying cause. Blood brain barrier disruption is one of the hallmarks of ischemic stroke pathology and was confirmed as early event during reperfusion injury in the second part of this study. Abolished platelet α-granule release protects mice from vascular leakage in the early reperfusion phase resulting in smaller infarcts. Using in vitro assays, platelet α-granule-derived PDGF-AB was identified as one factor contributing to blood-brain barrier disruption. In vivo visualization of platelet activation would provide important insights in the spatio-temporal context of platelet activation in stroke pathology. As platelet signaling results in elevated intracellular Ca2+ levels, this is an ideal readout. To overcome the limitations of chemical calcium indicators, a mouse line expressing an endogenous calcium reporter specifically in platelets and megakaryocytes was generated. Presence of the reporter did not interfere with platelet function, consequently these mice were characterized in in vivo and ex vivo models. Upon ischemic stroke, neutrophils are among the first cells that are recruited to the brain. Since for neutrophils both, beneficial and detrimental effects are described, their role was investigated within this thesis. Neither neutrophil depletion nor absence of NADPH-dependent ROS production (Ncf-/- mice) affected stroke outcome. In contrast, abolished NET-formation in Pad4-/- mice resulted in reduced infarct sizes, revealing detrimental effects of NETosis in the context of ischemic stroke, which might become a potential therapeutic target. Cerebral venous (sinus) thrombosis, CV(S)T is a rare type of stroke with mainly idiopathic onset. Whereas for arterial thrombosis a critical contribution of platelets is known and widely accepted, for venous thrombosis this is less clear but considered more and more. In the last part of this thesis, it was shown that fab-fragments of the anti-CLEC-2 antibody INU1 trigger pathological platelet activation in vivo, resulting in foudroyant CVT accompanied by heavy neurological symptoms. Using this novel animal model for CVT, cooperative signaling of the two platelet receptors CLEC-2 and GPIIb/IIIa was revealed as major trigger of CVT and potential target for treatment.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Klingler2023, author = {Klingler, Philipp}, title = {Exploration of proteasome interactions with human platelet function}, doi = {10.25972/OPUS-32108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Platelets are anucleated cell fragments derived from megakaryocytes. They play a fundamental role in hemostasis, but there is rising evidence that they are also involved in immunological processes. Despite absence of a nucleus, human platelets are capable of de novo protein synthesis and contain a fully functional proteasome system, which is, in nucleated cells, involved in processes like cell cycle progression or apoptosis by its ability of protein degradation. The physiological significance of the proteasome system in human platelets is not yet fully understood and subject of ongoing research. Therefore, this study was conducted with the intention to outline the role of the proteasome system for functional characteristics of human platelets. For experimentation, citrated whole blood from healthy donors was obtained and preincubated with proteasome inhibitors. In addition to the commonly used bortezomib, the potent and selective proteasome inhibitor carfilzomib was selected as a second inhibitor to rule out agent-specific effects and to confirm that observed changes are related to proteasome inhibition. Irreversibly induced platelet activation and aggregation were not affected by proteasome blockade with bortezomib up to 24 hours. Conversely, proteasome inhibition led to enhanced threshold aggregation and agglutination up to 25 \%, accompanied by partial alleviation of induced VASP phosphorylation of approximately 10-15 \%. Expression of different receptors were almost unaffected. Instead, a significant increase of PP2A activity was observable in platelets after proteasome blockade, accompanied by facilitated platelet adhesion to coated surfaces in static experiments or flow chamber experiments. Carfilzomib, used for the first time in functional experimentation with human platelets in vitro, led to a dose-dependent decrease of proteasome activity with accumulation of poly ubiquitylated proteins. Like bortezomib, carfilzomib treatment resulted in enhanced threshold aggregation with attenuated VASP phosphorylation. As the main conclusion of this thesis, proteasome inhibition enhances the responsiveness of human platelets, provided by an alleviation of platelet inhibitory pathways and by an additional increase of PP2A activity, resulting in facilitated platelet adhesion under static and flow conditions. The proteasome system appears to be involved in the promotion of inhibitory counterregulation in platelets. The potential of proteasome inhibitors for triggering thromboembolic adverse events in patients must be clarified in further studies, in addition to their possible use for targeting platelet function to improve the hemostatic reactivity of platelets.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Cherpokova2023, author = {Cherpokova, Deya}, title = {Studies on modulators of platelet (hem)ITAM signaling and platelet production in genetically modified mice}, doi = {10.25972/OPUS-30377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303777}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Summary Platelet activation and aggregation at sites of vascular injury is critical to prevent excessive blood loss, but may also lead to life-threatening ischemic disease states, such as myocardial infarction and stroke. Glycoprotein (GP) VI and C type lectin-like receptor 2 (CLEC-2) are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter protein (SLAP) and SLAP2 are involved in the regulation of immune cell receptor surface expression and signaling, but their function in platelets is unknown. As revealed in this thesis, single deficiency of SLAP or SLAP2 in mice had only moderate effects on platelet function, while SLAP/SLAP2 double deficiency resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity and thrombin generation following (hem)ITAM-coupled, but not G protein-coupled receptor activation. Slap-/-/Slap2-/- mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. These results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke. GPVI has emerged as a promising novel pharmacological target for treatment of thrombotic and inflammatory disease states, but the exact mechanisms of its immunodepletion in vivo are incompletely understood. It was hypothesized that SLAP and SLAP2 may be involved in the control of GPVI down-regulation because of their role in the internalization of immune cell receptors. As demonstrated in the second part of the thesis, SLAP and SLAP2 were dispensable for antibody-induced GPVI down-regulation, but anti-GPVI treatment resulted in prolonged strong thrombocytopenia in Slap-/-/Slap2-/- mice. The profound thrombocytopenia likely resulted from the powerful platelet activation which the anti-GPVI antibody induced in Slap-/-/Slap2-/- platelets, but importantly, not in wild-type platelets. These data indicate that the expression and activation state of key modulators of the GPVI signaling cascade may have important implications for the safety profile and efficacy of anti-GPVI agents. Small GTPases of the Rho family, such as RhoA and Cdc42, are critically involved in the regulation of cytoskeletal rearrangements during platelet activation, but little is known about the specific roles and functional redundancy of both proteins in platelet biogenesis. As shown in the final part of the thesis, combined deficiency of RhoA and Cdc42 led to marked alterations in megakaryocyte morphology and the generation of platelets of heterogeneous size and granule content. Despite severe hemostatic defects and profound thrombo¬cytopenia, circulating RhoA-/-/Cdc42-/- platelets were still capable of granule secretion and the formation of occlusive thrombi. These results implicate the existence of both distinct and overlapping roles of RhoA and Cdc42 in platelet production and function.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Becker2021, author = {Becker, Isabelle Carlotta}, title = {The role of megakaryocytes and platelets in vascular and osteogenic development}, doi = {10.25972/OPUS-21024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210241}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Platelets, small anucleate cell fragments in the blood stream, derive from large precursor cells, so-called megakaryocytes (MK) residing in the bone marrow (BM). In addition to their role in wound healing, platelets have been shown to play a significant role during inflammatory bleeding. Above all, the immunoreceptor tyrosine-based activation motif (ITAM) receptors GPVI as well as CLEC-2 have been identified as main regulators of vascular integrity. In addition to ITAM-bearing receptors, our group identified GPV as another potent regulator of hemostasis and thrombosis. Surprisingly, concomitant lack of GPV and CLEC-2 deteriorated blood-lymphatic misconnections observed in Clec2-/- mice resulting in severe edema formation and intestinal inflammation. Analysis of lymphatic and vascular development in embryonic mesenteries revealed severely defective blood-lymph-vessel separation, which translated into thrombocytopenia and increased vascular permeability due to reduced tight junction density in mesenteric blood vessels and consequent leakage of blood into the peritoneal cavity. Recently, platelet granule release has been proposed to ameliorate the progression of retinopathy of prematurity (ROP), a fatal disease in newborns leading to retinal degradation. The mechanisms governing platelet activation in this process remained elusive nonetheless, which prompted us to investigate a possible role of ITAM signaling. In the second part of this thesis, granule release during ROP was shown to be GPVI- and partly CLEC-2-triggered since blockade or loss of these receptors markedly deteriorated ROP progression. Proplatelet formation from MKs is highly dependent on a functional microtubule and actin cytoskeleton, the latter of which is regulated by several actin-monomer binding proteins including Cofilin1 and Twinfilin1 that have been associated with actin-severing at pointed ends. In the present study, a redundancy between both proteins especially important for the guided release of proplatelets into the bloodstream was identified, since deficiency in both proteins markedly impaired MK functionality mainly due to altered actin-microtubule crosstalk. Besides ITAM-triggered activation, platelets and MKs are dependent on inhibitory receptors, which prevent overshooting activation. We here identified macrothrombocytopenic mice with a mutation within Mpig6b encoding the ITIM-bearing receptor G6b-B. G6b-B-mutant mice developed a severe myelofibrosis associated with sex-specific bone remodeling defects resulting in osteosclerosis and -porosis in female mice. Moreover, G6b-B was shown to be indispensable for MK maturation as verified by a significant reduction in MK-specific gene expression in G6b-B-mutant MKs due to reduced GATA-1 activity.}, subject = {Megakaryozyt}, language = {en} } @phdthesis{Aurbach2021, author = {Aurbach, Katja}, title = {Studies on the role of the cytoskeleton in platelet production}, doi = {10.25972/OPUS-23466}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Platelets are small anucleated cell fragments that originate from megakaryocytes (MKs), which are large cells located in the bone marrow (BM). MKs extend long cytoplasmic protrusions, a process which is called proplatelet formation, into the lumen of the sinusoidal vessels where platelets are sized by the bloodstream. During the process of platelet biogenesis, segments of the MK penetrate the endothelium and, through cytoskeletal remodeling inside the MK, proplatelet fragments are released. Rho GTPases, such as RhoA and RhoB, are critically involved in cytoskeletal rearrangements of both the actin and the tubulin cytoskeleton. The first part of this thesis concentrated on the protein RhoB and its involvement in cytoskeletal organization in MKs and platelets. Single knockout (KO) mice lacking RhoB had a minor microthrombocytopenia, which means a smaller platelet size and reduced platelet number, accompanied by defects in the microtubule cytoskeleton in both MKs and platelets. In particular, tubulin organization and stability, which is regulated by posttranslational modifications of α-tubulin, were disturbed in RhoB-/- platelets. In contrast, RhoB-/- MKs produced abnormally shaped proplatelets but had unaltered posttranslational modifications of α-tubulin. The second part focused on the influence of RhoA and RhoB on MK localization and platelet biogenesis in murine BM. Many intact RhoA-/- MKs are able to transmigrate through the endothelial layer and stay attached to the vessel wall, whereas only 1\% of wildtype (wt) MKs are detectable in the intrasinusoidal space. Concomitant deficiency of RhoA and RhoB reverts this transmigration and results in macrothrombocytopenia, MK clusters around the vessel in the BM and defective MK development. The underlying mechanism that governs MKs to distinct localizations in the BM is poorly understood, thus this thesis suggests that this process may be dependent on RhoB protein levels, as RhoA deficiency is coincided with increased RhoB levels in MKs and platelets. The third part of this thesis targeted the protein PDK1, a downstream effector of Rho GTPases, in regard to MK maturation and polarization throughout thrombopoiesis. MK- and platelet-specific KO in mice led to a significant macrothrombocytopenia, impaired actin cytoskeletal reorganization during MK spreading and proplatelet formation, with defective MK maturation. This was associated with decreased PAK activity and, subsequently, phosphorylation of its substrates LIMK and Cofilin. Together, the observations of this thesis highlight the importance of Rho GTPases and their downstream effectors on the regulation of the MK and platelet cytoskeleton.}, subject = {Megakaryozyt}, language = {en} }