@article{DuekingHolmbergKunzetal.2020, author = {D{\"u}king, Peter and Holmberg, Hans‑Christer and Kunz, Philipp and Leppich, Robert and Sperlich, Billy}, title = {Intra-individual physiological response of recreational runners to different training mesocycles: a randomized cross-over study}, series = {European Journal of Applied Physiology}, volume = {120}, journal = {European Journal of Applied Physiology}, issn = {1439-6319}, doi = {10.1007/s00421-020-04477-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235022}, pages = {2705-2713}, year = {2020}, abstract = {Purpose Pronounced differences in individual physiological adaptation may occur following various training mesocycles in runners. Here we aimed to assess the individual changes in performance and physiological adaptation of recreational runners performing mesocycles with different intensity, duration and frequency. Methods Employing a randomized cross-over design, the intra-individual physiological responses [i.e., peak (\(\dot{VO}_{2peak}\)) and submaximal (\(\dot{VO}_{2submax}\)) oxygen uptake, velocity at lactate thresholds (V\(_2\), V\(_4\))] and performance (time-to-exhaustion (TTE)) of 13 recreational runners who performed three 3-week sessions of high-intensity interval training (HIIT), high-volume low-intensity training (HVLIT) or more but shorter sessions of HVLIT (high-frequency training; HFT) were assessed. Results \(\dot{VO}_{2submax}\), V\(_2\), V\(_4\) and TTE were not altered by HIIT, HVLIT or HFT (p > 0.05). \(\dot{VO}_{2peak}\) improved to the same extent following HVLIT (p = 0.045) and HFT (p = 0.02). The number of moderately negative responders was higher following HIIT (15.4\%); and HFT (15.4\%) than HVLIT (7.6\%). The number of very positive responders was higher following HVLIT (38.5\%) than HFT (23\%) or HIIT (7.7\%). 46\% of the runners responded positively to two mesocycles, while 23\% did not respond to any. Conclusion On a group level, none of the interventions altered \(\dot{VO}_{2submax}\), V\(_2\), V\(_4\) or TTE, while HVLIT and HFT improved \(\dot{VO}_{2peak}\). The mean adaptation index indicated similar numbers of positive, negative and non-responders to HIIT, HVLIT and HFT, but more very positive responders to HVLIT than HFT or HIIT. 46\% responded positively to two mesocycles, while 23\% did not respond to any. These findings indicate that the magnitude of responses to HIIT, HVLIT and HFT is highly individual and no pattern was apparent.}, language = {en} } @article{DavidsonDuekingZinneretal.2020, author = {Davidson, Padraig and D{\"u}king, Peter and Zinner, Christoph and Sperlich, Billy and Hotho, Andreas}, title = {Smartwatch-Derived Data and Machine Learning Algorithms Estimate Classes of Ratings of Perceived Exertion in Runners: A Pilot Study}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {9}, issn = {1424-8220}, doi = {10.3390/s20092637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205686}, year = {2020}, abstract = {The rating of perceived exertion (RPE) is a subjective load marker and may assist in individualizing training prescription, particularly by adjusting running intensity. Unfortunately, RPE has shortcomings (e.g., underreporting) and cannot be monitored continuously and automatically throughout a training sessions. In this pilot study, we aimed to predict two classes of RPE (≤15 "Somewhat hard to hard" on Borg's 6-20 scale vs. RPE >15 in runners by analyzing data recorded by a commercially-available smartwatch with machine learning algorithms. Twelve trained and untrained runners performed long-continuous runs at a constant self-selected pace to volitional exhaustion. Untrained runners reported their RPE each kilometer, whereas trained runners reported every five kilometers. The kinetics of heart rate, step cadence, and running velocity were recorded continuously ( 1 Hz ) with a commercially-available smartwatch (Polar V800). We trained different machine learning algorithms to estimate the two classes of RPE based on the time series sensor data derived from the smartwatch. Predictions were analyzed in different settings: accuracy overall and per runner type; i.e., accuracy for trained and untrained runners independently. We achieved top accuracies of 84.8 \% for the whole dataset, 81.8 \% for the trained runners, and 86.1 \% for the untrained runners. We predict two classes of RPE with high accuracy using machine learning and smartwatch data. This approach might aid in individualizing training prescriptions.}, language = {en} } @article{KilianWehmeierWahletal.2016, author = {Kilian, Yvonne and Wehmeier, Udo F. and Wahl, Patrick and Mester, Joachim and Hilberg, Thomas and Sperlich, Billy}, title = {Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children}, series = {Frontiers in Physiology}, volume = {7}, journal = {Frontiers in Physiology}, number = {92}, doi = {10.3389/fphys.2016.00092}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165261}, year = {2016}, abstract = {Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods: Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml•min-1•kg-1 peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90-95\% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60\% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30′, 60′, 180′) and HVT (d3, 0′, 60′). Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.}, language = {en} } @article{KunzAzadEngelHolmbergetal.2019, author = {Kunz, Philipp and Azad Engel, Florian and Holmberg, Hans-Christer and Sperlich, Billy}, title = {A meta-comparison of the effects of high-intensity interval training to those of small-sided games and other training protocols on parameters related to the physiology and performance of youth soccer players}, series = {Sports Medicine - Open}, volume = {5}, journal = {Sports Medicine - Open}, doi = {10.1186/s40798-019-0180-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200332}, pages = {7}, year = {2019}, abstract = {Background High-intensity interval training (HIIT) is frequently employed to improve the endurance of various types of athletes. To determine whether youth soccer players may benefit from the intermittent load and time efficiency of HIIT, we performed a meta-analysis of the relevant scientific literature. Objectives Our primary objective was to compare changes in various physiological parameters related to the performance of youth soccer players in response to running-based HIIT to the effects of other common training protocols (i.e., small-sided games, technical training and soccer-specific training, or high-volume endurance training). A secondary objective was to compare specifically running-based HIIT to a soccer-specific form of HIIT known as small-sided games (SSG) in this same respect, since this latter type of training is being discussed extensively by coaches. Method A systematic search of the PubMed, SPORTDiscus, and Web of Science databases was performed in August of 2017 and updated during the review process in December of 2018. The criteria for inclusion of articles for analysis were as follows: (1) comparison of HIIT to SSG or some other training protocol employing a pre-post design, (2) involvement of healthy young athletes (≤ 18 years old), and (3) assessment of variables related to endurance or soccer performance. Hedges' g effect size (dppc2) and associated 95\% confidence intervals for the comparison of the responses to HIIT and other interventions were calculated. Results Nine studies, involving 232 young soccer players (mean age 16.2 ± 1.6 years), were examined. Endurance training in the form of HIIT or SSG produced similar positive effects on most parameters assessed, including peak oxygen uptake and maximal running performance during incremental running (expressed as Vmax or maximal aerobic speed (MAS)), shuttle runs (expressed as the distance covered or time to exhaustion), and time-trials, as well as submaximal variables such as running economy and running velocity at the lactate threshold. HIIT induced a moderate improvement in soccer-related tests involving technical exercises with the soccer ball and other game-specific parameters (i.e., total distance covered, number of sprints, and number of involvements with the ball). Neuromuscular parameters were largely unaffected by HIIT or SSG. Conclusion The present meta-analysis indicates that HIIT and SSG have equally beneficial impacts on variables related to the endurance and soccer-specific performance of youth soccer players, but little influence on neuromuscular performance.}, language = {en} } @article{BornZinnerSperlich2017, author = {Born, Dennis-Peter and Zinner, Christoph and Sperlich, Billy}, title = {The mucosal immune function is not compromised during a period of high-intensity interval training. Is it time to reconsider an old assumption?}, series = {Frontiers in Physiology}, volume = {8}, journal = {Frontiers in Physiology}, number = {485}, doi = {10.3389/fphys.2017.00485}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158025}, year = {2017}, abstract = {Purpose: The aim of the study was to evaluate the mucosal immune function and circadian variation of salivary cortisol, Immunoglobin-A (sIgA) secretion rate and mood during a period of high-intensity interval training (HIIT) compared to long-slow distance training (LSD). Methods: Recreational male runners (n = 28) completed nine sessions of either HIIT or LSD within 3 weeks. The HIIT involved 4 × 4 min of running at 90-95\% of maximum heart rate interspersed with 3 min of active recovery while the LSD comprised of continuous running at 70-75\% of maximum heart rate for 60-80 min. The psycho-immunological stress-response was investigated with a full daily profile of salivary cortisol and immunoglobin-A (sIgA) secretion rate along with the mood state on a baseline day, the first and last day of training and at follow-up 4 days after the last day of training. Before and after the training period, each athlete's running performance and peak oxygen uptake (V·O\(_{2peak}\)) was determined with an incremental exercise test. Results: The HIIT resulted in a longer time-to-exhaustion (P = 0.02) and increased V·O\(_{2peak}\) compared to LSD (P = 0.01). The circadian variation of sIgA secretion rate showed highest values in the morning immediately after waking up followed by a decrease throughout the day in both groups (P < 0.05). With HIIT, the wake-up response of sIgA secretion rate was higher on the last day of training (P < 0.01) as well as the area under the curve (AUC\(_{G}\)) higher on the first and last day of training and follow-up compared to the LSD (P = 0.01). Also the AUC\(_{G}\) for the sIgA secretion rate correlated with the increase in V·O\(_{2peak}\) and running performance. The AUC\(_{G}\) for cortisol remained unaffected on the first and last day of training but increased on the follow-up day with both, HIIT and LSD (P < 0.01). Conclusion: The increased sIgA secretion rate with the HIIT indicates no compromised mucosal immune function compared to LSD and shows the functional adaptation of the mucosal immune system in response to the increased stress and training load of nine sessions of HIIT.}, language = {en} }