@article{JanzWalzCirnuetal.2024, author = {Janz, Anna and Walz, Katharina and Cirnu, Alexandra and Surjanto, Jessica and Urlaub, Daniela and Leskien, Miriam and Kohlhaas, Michael and Nickel, Alexander and Brand, Theresa and Nose, Naoko and W{\"o}rsd{\"o}rfer, Philipp and Wagner, Nicole and Higuchi, Takahiro and Maack, Christoph and Dudek, Jan and Lorenz, Kristina and Klopocki, Eva and Erg{\"u}n, S{\"u}leyman and Duff, Henry J. and Gerull, Brenda}, title = {Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes}, series = {Molecular Metabolism}, volume = {79}, journal = {Molecular Metabolism}, issn = {2212-8778}, doi = {10.1016/j.molmet.2023.101859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350393}, year = {2024}, abstract = {Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.}, language = {en} } @article{TolstikAliGuoetal.2022, author = {Tolstik, Elen and Ali, Nairveen and Guo, Shuxia and Ebersbach, Paul and M{\"o}llmann, Dorothe and Arias-Loza, Paula and Dierks, Johann and Schuler, Irina and Freier, Erik and Debus, J{\"o}rg and Baba, Hideo A. and Nordbeck, Peter and Bocklitz, Thomas and Lorenz, Kristina}, title = {CARS imaging advances early diagnosis of cardiac manifestation of Fabry disease}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms23105345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284427}, year = {2022}, abstract = {Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96\%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.}, language = {en} }