@article{WernerHiguchiPomperetal.2021, author = {Werner, Rudolf A. and Higuchi, Takahiro and Pomper, Martin G. and Rowe, Steven P.}, title = {Theranostics in oncology — thriving, now more than ever}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {5}, issn = {2075-4418}, doi = {10.3390/diagnostics11050805}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236662}, year = {2021}, abstract = {Tracing its roots back to the 1940s, theranostics in nuclear oncology has proved successful mainly due to the beneficial effects of image-guided therapeutic concepts for patients afflicted with a variety of different cancers. The majority of these treatments are not only characterized by substantial prolongation of progression-free and overall survival, but are also generally safe, rendering theranostic agents as an attractive treatment option in various clinical scenarios in oncology. In this Special Issue Novel Theranostic Agents, nine original articles from around the globe provide further evidence on the use of the theranostic concept for neuroendocrine neoplasm (NEN), prostate cancer (PC), meningioma, and neuroblastoma. The investigated diagnostic and therapeutic radiotracers target not only established structures, such as somatostatin receptor, prostate-specific membrane antigen or norepinephrine transporter, but also recently emerging targets such as the C-X-C motif chemokine receptor 4. Moreover, the presented original articles also combine the concept of theranostics with in-depth read-out techniques such as radiomics or novel reconstruction algorithms on pretherapeutic scans, e.g., for outcome prediction. Even 80 years after its initial clinical introduction, theranostics in oncology continues to thrive, now more than ever.}, language = {en} } @article{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Higuchi, Takahiro and Weich, Alexander and Sheikhbahaei, Sara and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {MI-RADS: Molecular Imaging Reporting and Data Systems - A Generalizable Framework for Targeted Radiotracers with Theranostic Implications}, series = {Annals of Nuclear Medicine}, journal = {Annals of Nuclear Medicine}, issn = {0914-7187}, doi = {10.1007/s12149-018-1291-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166995}, year = {2018}, abstract = {Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader's confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }