@phdthesis{Devine2013, author = {Devine, Eric}, title = {Increased removal of protein bound uremic toxins through reversible modification of the ionic strength during hemodiafiltration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83583}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {A large number of metabolic waste products accumulate in the blood of patients with renal failure. Since these solutes have deleterious effects on the biological functions, they are called uremic toxins and have been classified in three groups: 1) small water soluble solutes (MW < 500 Da), 2) small solutes with known protein binding (MW < 500 Da), and 3) middle molecules (500 Da < MW < 60 kDa). Protein bound uremic toxins are poorly removed by conventional hemodialysis treatments because of their high protein binding and high distribution volume. The prototypical protein bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (pCS) are associated with the progression of chronic kidney disease, cardiovascular outcomes, and mortality of patients on maintenance hemodialysis. Furthermore, these two compounds are bound to albumin, the main plasma protein, via electrostatic and/or Van-der-Waals forces. The aim of the present thesis was to develop a dialysis strategy, based on the reversible modification of the ionic strength in the blood stream by increasing the sodium chloride (NaCl) concentration, in order to enhance the removal of protein bound substances, such as IS and pCS, with the ultimate goal to improve clinical patient outcomes. Enhancing the NaCl concentration ([NaCl]) in both human normal and uremic plasma was efficient to reduce the protein bound fraction of both IS and pCS by reducing their binding affinity to albumin. Increasing the ionic strength was feasible during modified pre-dilution hemodiafiltration (HDF) by increasing the [NaCl] in the substitution fluid. The NaCl excess was adequately removed within the hemodialyzer. This method was effective to increase the removal rate of both protein bound uremic toxins. Its ex vivo hemocompatibility, however, was limited by the osmotic shock induced by the high [NaCl] in the substituate. Therefore, modified pre-dilution HDF was further iterated by introducing a second serial cartridge, named the serial dialyzers (SDial) setup. This setting was validated for feasibility, hemocompatibility, and toxin removal efficiency. A better hemocompatibility at similar efficacy was obtained with the SDial setup compared with the modified pre-dilution HDF. Both methods were finally tested in an animal sheep model of dialysis to verify biocompatibility. Low hemolysis and no activation of both the complement and the coagulation systems were observed when increasing the [NaCl] in blood up to 0.45 and 0.60 M with the modified pre-dilution HDF and the SDial setup, respectively. In conclusion, the two dialysis methods developed to transitory enhance the ionic strength in blood demonstrated adequate biocompatibility and improved the removal of protein bound uremic toxins by decreasing their protein bound fraction. The concepts require follow-on clinical trials to assess their in vivo efficacy and their impact on long-term clinical outcomes.}, subject = {H{\"a}modiafiltration}, language = {en} } @phdthesis{Schlereth2013, author = {Schlereth, Florian}, title = {Expression of the DHEA/DHEAS-Shuttle in cell lines and foetal tissue of human liver, adrenal and cartilage}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102068}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {DHEA is a precursor for the male and female sex hormones testosterone and estradiol, which are mainly secreted from the testes and the ovary, respectively. In addition, epidemiological studies showed that low serum levels of DHEA and DHEAS correlate with the incidence of autoimmune disease, cancer and cardiovascular disease. In vitro, DHEA and DHEAS influenced glucose metabolism in a favourable manner. However, positive effects of DHEA substitution were only significant adrenal insufficiency in women. Steroid sulphotransferase 2A1 (SULT2A1) is the responsible enzyme for sulphonation of DHEA to DHEAS which is thought to be the inactive form of DHEA. In this role, SULT2A1 acts as a central regulator of steroid synthesis because sulphonation of DHEA withdraws the substrate for further downstream conversion. Another essential cofactor for sulphonation is PAPS, which is produced by the enzyme PAPS synthase (PAPSS) from ATP and anorganic sulphate. PAPSS exists in the different isoforms PAPSS1 and PAPSS2 and splice variants PAPSS2a and PAPSS2b. Changes in PAPSS activity are thought to influence sulphonation of DHEA significantly. However, neither regulation of PAPSS nor its influence on SULT2A1 have been investigated in human cell lines or humans. The main goal of this thesis was to analyze the enzyme expression of the DHEA/DHEA shuttle, i.e. mRNA and protein of SULT2A1, PAPSS1 and PAPSS2, in various human cell lines. Furthermore, I investigated which cell line could serve as a suitable model for further research regarding regulation of SULT2A1, PAPSS1 and PAPSS2. Here, I could show that the enzymes of the DHEA/DHEAS shuttle were expressed in the human adrenal cell line NCI-h295R as both mRNA and protein. In enzyme assays, I was able to prove conversion of DHEA to DHEAS as well as to different other steroids. However, applying Trilostane, a potent inhibitor of CYP3B, effectively directed conversion of DHEA to DHEAS. Using these findings, future experiments can investigate for example the influence of certain cytokines or endocrine disruptors on expression and activity of PAPSS1/2 and on sulphonation of DHEA. In particular, the relatively equal expression of PAPSS1 and PAPSS2 will enable us to do knock down experiments with siRNA to elucidate how the activity of one enzyme changes when the other one fails. Sulphonation of DHEA by SULT2A1 is thought to happen in the cytoplasm or more precisely in the Golgi apparatus. However, experiments in transfected cells have shown both a cytoplasmatic and a nuclear localisation when both enzymes were expressed at the same time. Immunocytochemistry revealed the same results in the adrenal cell line NCI-h295R, where both enzymes were expressed strongly in the nucleus. The physiological role is not clear and requires further research. Presumably, sulphate is activated in the nucleus. However, one could also speculate that a shift of PAPSS to the nucleus could generate a reservoir, which can be activated by re-localisation to the cytoplasm when more PAPS is needed. Expression of SULT2A1 in some foetal tissues has been investigated earlier. Whilst in adult human cartilage PAPSS1 is predominant, in newly born hamsters PAPSS2 is more abundantly expressed. The expression of PAPSS isoforms in highly sulphonating tissue has not been investigated in humans, so far. This work demonstrated a differential expression of SULT2A1, PAPSS1 and PAPSS2 in adult and foetal liver, adrenal and foetal cartilage tissue. In adult and foetal adrenal expression was similar. However, foetal and adult liver differed in the expression of SULT2A1, which was expressed much more in adult tissue. Most importantly, in foetal cartilage there was only a low expression of SULT2A1 and PAPS seems to mostly provided by PAPSS1, which was considerably higher expressed in cartilage than in other tissues. In contrast, PAPSS2 was mainly expressed in adult and foetal adrenal. Additionally, we reported a case of a female patient who had been investigated for hyperandrogenism. Two mutations in the PAPSS2 gene had led to massively reduced serum levels of DHEAS. One heterozygous mutation in the domain of the APS kinase of the PAPSS2 protein leads to substitution of one amino acid at position 48 (T48R). In vitro experiments showed a residual activity of 6\% for this mutation. A second mutation in the ATP sulphurylase domain of PAPSS2 was found. The introduction of thymidine instead of cytidine leads to a stop codon, which is presumed to truncate the protein at position 329 (R329X). In vitro, no residual activity was seen for this mutation. The lack of PAPS reduces sulphonation of DHEA but also sulphonation of proteoglycanes, which leads to skeletal abnormalities. The abundance of DHEA enables massive downstream conversion to androgens leading to clinical features of hyperandrogenism. Regarding the bone abnormalities, it is interesting and surprising that activity of PAPSS1 compensated to a great extent in cartilage but was not able to keep up a more considerable sulphonation of DHEA. Possibly, the subcellular localisation might play a role in this scenario.}, subject = {Dehydroepiandrosteron}, language = {en} } @phdthesis{Michalska2013, author = {Michalska, Marta}, title = {Molecular Imaging of atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73243}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Atherosklerose ist eine aktive und progressive Erkrankung, bei der vaskul{\"a}re Adh{\"a}sionsmolek{\"u}le wie VCAM-1 eine entscheidende Rolle durch Steuerung der Rekrutierung von Immunzellen in den fr{\"u}hen und fortgeschrittenen Plaques spielen. Ein zielgerichteter Einsatz von VCAM-1-Molek{\"u}len mit spezifischen Kontrastmitteln ist daher eine M{\"o}glichkeit, die VCAM-1-Expression zu kontrollieren, Plaquewachstum ab einem fr{\"u}hen Zeitpunkt zu visualisieren und eine fr{\"u}he Pr{\"a}vention von Atherosklerose vor Beginn der Thrombusbildung zu etablieren. Des Weiteren bietet die nichtinvasive Magnetresonanz (MR)-Bildgebung den Vorteil der Kombination molekularer und morphologischer Daten. Sie erm{\"o}glicht, mithilfe von entwickelten VCAM-1-markierten Eisenoxidpartikeln, den spezifischen Nachweis entz{\"u}ndlicher Prozesse w{\"a}hrend der Atherosklerose. Diese Arbeit belegt, dass mit dem VCAM-1-Konzept eine vielversprechende Herangehensweise gefunden wurde und dass das, mit spezifischen superparamagnetischen Eisenoxid (USPIO) konjugierte VCAM-1-Peptid, gegen{\"u}ber unspezifischer USPIOs ein erh{\"o}htes Potenzial bei der Untersuchung der Atherosklerose in sich tr{\"a}gt. Im ersten Teil der Arbeit konnte im Mausmodell gezeigt werden, dass gerade das VCAM-1-Molek{\"u}l ein sinnvoller Ansatzpunkt zur Darstellung und Bildgebung von Atherosklerose ist, da in der fr{\"u}hen Phase der Entz{\"u}ndung die vaskul{\"a}ren Zelladh{\"a}sionsmolek{\"u}le {\"u}berexprimiert und auch kontinuierlich, w{\"a}hrend der fortschreitenden Plaquebildung, hochreguliert werden. Weiterhin beschreibt diese Arbeit die Funktionst{\"u}chtigkeit und das Verm{\"o}gen des neu gestalteten USPIO Kontrastmittels mit dem zyklischen Peptid, in seiner Spezialisierung auf die VCAM-1 Erkennung. Experimentelle Studien mit ultra-Hochfeld-MRT erm{\"o}glichten weitere ex vivo und in vivo Nachweise der eingesetzten USPIO-VCAM-1-Partikel innerhalb der Region um die Aortenwurzel in fr{\"u}hen und fortgeschrittenen atherosklerotischen Plaques von 12 und 30 Wochen alten Apolipoprotein E-defizienten (ApoE-/-) M{\"a}usen. Mit ihrer Kombination aus Histologie und Elektronenmikroskopie zeigt diese Studie zum ersten Mal die Verteilung von VCAM-1-markierten USPIO Partikeln nicht nur in luminalem Bereich der Plaques, sondern auch in tieferen Bereichen der medialen Muskelzellen. Dieser spezifische und sensitive Nachweis der fr{\"u}hen und fortgeschrittenen Stadien der Plaquebildung bringt auf molekularer Ebene neue M{\"o}glichkeiten zur Fr{\"u}herkennung von atherosklerotischen Plaques vor dem Entstehen von 8 Rupturen. Im Gegensatz zum USPIO-VCAM-1-Kontrastmittel scheiterten unspezifische USPIO Partikel an der Identifikation fr{\"u}her Plaqueformen und begrenzten die Visualisierung von Atherosklerose auf fortgeschrittene Stadien in ApoE-/- M{\"a}usen.}, subject = {VCAM}, language = {en} } @phdthesis{Liu2011, author = {Liu, Dan}, title = {Regional Myocardial Deformation in Adult Patients with Isolated Left Ventricular Non-compaction Cardiomyopathy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55838}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Isolated left ventricular non-compaction cardiomyopathy (LVNC) is a congenital myocardial disease characterized by excessive and prominent trabeculations in the left ventricle with deep intertrabecular recesses. Trabeculation is, however, a non specific finding which is present not only in LVNC but also in other cardiomyopathies like dilated cardiomyopathy (DCM) and even in healthy controls, therefore, differential diagnosis keeps puzzling clinicians. Therefore the present study aimed to comprehensively explore regional myocardial deformation properties in adult patients with isolated LVNC using strain and strain rate imaging derived from tissue Doppler imaging and 2D speckle tracking. It was proposed that the knowledge of deformation properties in LVNC would help to differentiate patients with LVNC and DCM. A total of 14 patients with LVNC, 15 patients with DCM, and 15 healthy controls were included in this study. The groups were matched for age and gender. Standard 2D echocardiography was performed in all subjects, and tissue Doppler imaging (TDI) of all ventricular walls was acquired using parasternal long axis, apical 4-chamber, 2-chamber, and apical long axis views. Deformation imaging data derived from both TDI and grey scale images were analyzed. Clinical and standard echocardiographic findings in patients with LVNC and DCM were similar. In patients with LVNC, hypertrabeculation was mostly located in the apical and mid segments of the left ventricle and strikingly more than in patients with DCM. The extent of non-compaction was poorly related to global left ventricular systolic function (LVEF) as well as regional myocardial function assessed by strain rate imaging. Regional myocardial systolic deformation in patients with LVNC was significantly impaired in the left and right ventricles in both longitudinal and radial direction. There was a striking difference on longitudinal myocardial systolic function between LVNC and DCM patients, i.e., an increasing strain and strain rate gradient from apex to base in patients with LVNC, whereas patients with DCM displayed a homogeneously decreased strain and strain rate in all segments. Results derived from 2D speckle tracking method were consistent with those from TDI method. Analysis of myocardial mechanical asynchrony revealed a lack of myocardial contraction synchrony in the LVNC and DCM patients. The time to systolic peak velocity was obviously delayed in these two patient groups. However, the mechanical asynchrony features were similar in patients with LVNC and DCM and could not serve for differential diagnosis. In conclusion, LVNC and DCM are both cardiomyopathies presenting reduced regional myocardial function and mechanical asynchrony. Nevertheless differential diagnosis can be made by analysis of hypertrabeculation as well as analysis of regional myocardial deformation pattern.}, subject = {Ultraschallkardiographie}, language = {en} } @phdthesis{Fiedler2010, author = {Fiedler, Jan}, title = {Endothelial microRNA-24 contributes to capillary density in the infarcted heart}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49809}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Cardiovascular disease is the most common mortality risk in the industrialized world. Myocardial infarction (MI) results in the irreversible loss of cardiac muscle, triggering pathophysiological remodelling of the ventricle and development of heart failure. Insufficient myocardial capillary density within the surviving myocardium after MI has been identified as a critical event in this process, although the underlying molecular signalling pathways of cardiac angiogenesis are mechanistically not well understood. The discovery of microRNAs (miRNAs, miRs), small non-coding RNAs with 19-25 nucleotides in length, has introduced a new level of the regulation of cardiac signalling pathways. MiRNAs regulate gene expression post-transcriptionally by binding to their complementary target messenger RNAs (mRNAs) and represent promising therapeutic targets for gene therapy. Here, it is shown that cardiac miR-24 is primarily expressed in cardiac endothelial cells and upregulated following MI in mice and hypoxic conditions in vitro. Enhanced miR-24 expression induces endothelial cell apoptosis and impairs endothelial capillary network formation. These effects on endothelial cell biology are at least in part mediated through targeting of transcription factor GATA2, histone deacetylase H2A.X, p21-activated kinase PAK4 and Ras p21 protein activator RASA1. Mechanistically, target repression abolishes respective and secondary downstream signalling cascades. Here it is shown that endothelial GATA2 is an important mediator of cell cycle, apoptosis and angiogenesis at least in part by regulation of cytoprotective heme oxygenase 1 (HMOX1). Moreover, additional control of endothelial apoptosis is achieved by the direct miR-24 target PAK4. Its kinase function is essential for anti-apoptotic Bad phosphorylation in endothelial cells. In a mouse model of MI, blocking of endothelial miR-24 by systemic administration of a specific antagonist (antagomir) enhances capillary density in the infarcted heart and preserves cardiac function. The current findings indicate miR-24 to act as a critical regulator of endothelial cell apoptosis and angiogenesis. Modulation of miR-24 may be potentially a suitable strategy for therapeutic intervention in the setting of ischemic heart diseases.}, subject = {Herzinfarkt}, language = {en} } @phdthesis{Burkard2010, author = {Burkard, Natalie}, title = {Signal{\"u}bertragungswege und Pr{\"a}ventionsm{\"o}glichkeiten der kardialen Hypertrophie : conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia-reperfusion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Zusammenfassung: Wie fr{\"u}her schon gezeigt, wird der L-Typ Ca2+-Kanal durch eine induzierbare, myokardspezifische {\"U}berexpression der neuronalen Stickstoffmonoxidsynthase (nNOS) inhibiert. Gleichzeitig bewirkt diese {\"U}berexpression eine verminderte kardiale Kontraktilit{\"a}t1 (Burkard N. et al. (2007). Circ Res 100, 32-44). nNOS interagiert mit vielen verschiedenen Kompartimenten und Kan{\"a}len innerhalb der Zelle. In dieser Arbeit wurde gezeigt, dass eine nNOS {\"U}berexpression nach Isch{\"a}mie-Reperfusion kardioprotektiv wirkt. Dieses wird durch eine Inhibition der Mitochondrienfunktion und durch eine Verminderung der reaktiven Sauerstoffspezies (ROS) erm{\"o}glicht. In einer fr{\"u}heren Arbeit wurde der Effekt der induzierbaren und myokardspezifischen {\"U}berexpression von nNOS unter physiologischen Bedingungen am transgenen Tiermodell untersucht. Diese Arbeit besch{\"a}ftigt sich nun mit der {\"U}berexpression von nNOS unter pathophysiologischen (Isch{\"a}mie-Reperfusion) Bedingungen. Ein Isch{\"a}mie-Reperfusions-Schaden bewirkt bei Wildtyp-M{\"a}usen, sowie bei transgener nNOS {\"U}berexpression eine Anreicherung von nNOS in den Mitochondrien. Elektronenmikroskopische Aufnahmen von Mausmyokard haben gezeigt, dass bei {\"U}berexpression nNOS zus{\"a}tzlich in den Mitochondrien lokalisiert ist. Diese Translokation von nNOS in die Mitochondrien ist abh{\"a}ngig von HSP90. Isch{\"a}mie- Reperfusionsexperimente an isolierten M{\"a}useherzen zeigten einen kardioprotektiven Effekt der nNOS {\"U}berexpression (30min post ischemia, LVDP 27.0±2.5mmHg vs. 45.2±1.9mmHg, n=12, p<0.05). Dieser positive Effekt konnte bei der Bestimmung der Infarktgr{\"o}ße best{\"a}tigt werden. nNOS {\"u}berexprimierende M{\"a}use hatten eine kleinere Infarktgr{\"o}ße nach Isch{\"a}mie-Reperfusion (36.6±8.4 relative \% vs. 61.1±2.9 relative \%, n=8, p<0.05). Die {\"U}berexpression von nNOS bewirkte ebenfalls einen signifikanten Anstieg des mitochondrialen Nitrit-Levels, begleitet von einer Verminderung der Cytochrom C Oxidase Aktivit{\"a}t (72.0±8.9units/ml in nNOS overexpressing mice vs. 113.2±17.1units/ml in non-induced mice, n=12, p<0.01), was zu einer Hemmung der Mitochondrienfunktion f{\"u}hrt. Dementsprechend war der Sauerstoffverbrauch (gemessen an isolierten Herzmuskelstreifen) schon unter basalen Bedingungen beinNOS {\"U}berexpression vermindert (0.016±0.0015 vs. 0.024±0.006ml[O2] x mm-3 x min-1, n=13, p<0.05). Außerdem war die ROS Konzentration in Herzen von nNOS {\"u}berexprimierenden M{\"a}usen signifikant vermindert (6.14±0.685 vs. 14.53±1.7μM, n=8, p<0.01). Die Zugabe von verschiedenen Inhibitoren, Western Blot- und Aktivit{\"a}tsuntersuchungen zeigten schließlich, dass diese niedrigere ROS Konzentration durch eine verminderte Xanthin Oxidoreduktase Aktivit{\"a}t hervorgerufen wurde. Zusammenfassend hat diese Arbeit gezeigt, dass eine induzierbare und myokardspezifische {\"U}berexpression von nNOS unter pathophysiologischen Bedingungen (Isch{\"a}mie-Reperfusion) kardioprotektiv wirkt. Zus{\"a}tzlich zu der Verminderung des myokardialen Ca2+-{\"U}berschusses nach Reperfusion k{\"o}nnte dieser protektive Effekt durch eine Hemmung der Mitochondrienfunktion bedingt sein, schließlich wird der Sauerstoffverbrauch schon unter basalen Bedingungen reduziert}, subject = {Herzhypertrophie}, language = {en} } @phdthesis{Kehlenbrink2010, author = {Kehlenbrink, Sylvia}, title = {Inhibiting Gluconeogenesis (GNG) Prevents the Effects of Free Fatty Acids (FFA) on Hepatic Glucose Effectiveness (GE)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48389}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Free fatty acids (FFA) modulate the effectiveness of glucose to suppress endogenous glucose production (EGP), and increased FFA levels contribute importantly to the loss of glucose effectiveness in type 2 diabetes mellitus (T2DM). Elevating FFA levels in nondiabetic (ND) subjects for at least 6h both increases gluconeogenesis (GNG) and impairs glucose effectiveness. Therefore, we wished to define the extent to which an increase in GNG is responsible for the loss of glucose effectiveness and whether EGP can be inhibited in the presence of elevated plasma FFA by inhibiting GNG with ethanol. To determine the effect of inhibiting GNG on glucose effectiveness, EGP ([3-3H]-glucose) was measured during three separate 7h normoglycemic/hyperglycemic pancreatic clamp studies (somatostatin; basal glucagon/GH/insulin replacement) in n=7 ND subjects (1F/6M; age=45±5 yr; BMI=27.6±3.0 kg/m2). Following an initial 210 min interval of euglycemia (5 mmol/l), blood glucose levels were raised to hyperglycemic levels (10 mmol/l) from t=210-420 min. The first pancreatic clamp study was a baseline study with saline infusions (Lip-/Et-). Lipid emulsion (Liposyn 20\%) was infused throughout the second and third study types (Lip+ and Lip+/Et+) to increase FFA to T2DM levels (~ 500 mmol/l). In addition to Liposyn, ethanol (Et) was infused during hyperglycemia in the third study type (Lip+/Et+), using a pharmacokinetic algorithm to attain GNG-inhibiting ethanol levels of 80 mg/dl within 20 min. Under baseline conditions, hyperglycemia suppressed EGP by 61\%. After raising plasma FFA to T2DM levels, suppression of EGP by hyperglycemia was impaired in Lip+ (34\% decrease). During the Lip+/Et+ co-infusion studies the infusion of ethanol enhanced suppression of EGP by hyperglycemia (65.8\% decrease, P=0.004 vs. Lip+) and thus restored glucose effectiveness (P=0.6 vs. Lip-/Et-). Thus, our results confirm the striking effects of elevated plasma FFA to impair glucose effectiveness and suggest that increased GNG contributes importantly to this loss of regulation. Inhibiting GNG could be an effective means of lowering EGP and improving glucose effectiveness in T2DM.}, subject = {Gluconeogenese}, language = {en} } @phdthesis{Govindaraj2009, author = {Govindaraj, Vijayakumar}, title = {Improved Cardiac Glucose Uptake: A Potential Mechanism for Estrogens to Prevent the Development of Cardiac Hypertrophy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35911}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The incidence of cardiovascular diseases including cardiac hypertrophy and failure in pre-menopausal women is lower compared to age-matched men but the risk of heart disease increases substantially after the onset of menopause. It has been postulated that female sex hormones play an important role in cardiovascular health in pre-menopausal women. In animal studies including spontaneously hypertensive (SHR) rats, the development of cardiac hypertrophy is attenuated by 17\&\#946;-estradiol treatment. Cardiac energy metabolism is crucial for normal function of the heart. In cardiac hypertrophy and heart failure, the myocardium undergoes a metabolic shift from fatty acid as primary cardiac energy source to glucose, which re-introduces the fetal type of metabolism that representing the glucose as a major source of energy. Many studies have reported that the disruption of the balance between glucose and fatty acid metabolism plays an important role in cardiac pathologies including hypertrophy, heart failure, diabetes, dilative cardiomyopathy and myocardial infarction. Glucose enters cardiomyocytes via GLUT1 and GLUT4 glucose transporters and GLUT4 is the major glucose transporter which is insulin-dependent. Cardiac-selective GLUT4 deficiency leads to cardiac hypertrophy. This shows that the decrease in cardiac glucose uptake may play a direct role in the pathogenesis of cardiac hypertrophy. Estrogens modulate glucose homeostasis in the liver and the skeletal muscle. But it is not known whether estrogens affect also cardiac glucose uptake which could provide another mechanism to explain the prevention of cardiac hypertrophy by female sex hormones. In the present study, SHR Rats were ovariectomized (OVX), not ovariectomized (sham) or ovariectomized and treated with subcutaneous 17\&\#946;-estradiol. After 6 weeks of treatment, body weight, the serum levels of estrogen, insulin, intra-peritoneal glucose tolerance test (IP-GTT), myocardial glucose uptake by FDG-PET (2-(18F)-fluoro-deoxyglucose (18FDG) and Positron Emission Tomography), cardiac glucose transporter expression and localization and cardiac hexokinase activity were analyzed. As results of this study, PET analysis of female SHR revealed decreased cardiac glucose uptake in OVX animals compared to intact that was normalized by estrogen supplementation. Interestingly, there was no change in global glucose tolerance among the treatment groups. Serum insulin levels and cardiac hexokinase activity were elevated by E2 substitution. The protein content of cardiac glucose transporters GLUT-4 and GLUT-1, and their translocation as determined by fractionation studies and immuno-staining did not show any significant change by ovariectomy and estrogen replacement. Also levels of insulin receptor substrate-1 (IRS-1) and its tyrosine phosphorylation, which is required for activation and translocation of GLUT4, was un-affected in all groups of SHR. Cardiac gene expression analysis in SHR heart showed that ei4Ebp1 and Frap1 genes which are involved in the mTOR signaling pathway, were differentially expressed upon estrogen treatment. These genes are known to be activated in presence of glucose in the heart. As a conclusion of this study, reduced myocardial FDG uptake in ovariectomized spontaneously hypertensive rat is normalized by 17\&\#946;-estradiol treatment. Increased myocardial hexokinase appears as a potential mechanism to explain increased myocardial glucose uptake by 17\&\#946;-estradiol. Increased cardiac glucose uptake in response to 17\&\#946;-estradiol in ovariectomized SHR may provide a novel mechanism to explain the reduction of cardiac hypertrophy in E2 treated SHR. Therefore, 17\&\#946;-estradiol improves cardiac glucose utilization in ovariectomized SHR which may give rise to possible mechanism for its protective effects against cardiac hypertrophy.}, subject = {estrogen}, language = {en} } @phdthesis{Padmapriya2008, author = {Padmapriya, Ponnuswamy}, title = {Insight into oxidative stress mediated by nitric oxide synthase (NOS) isoforms in atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30659}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The principle product of each NOS is nitric oxide. However, under conditions of substrate and cofactor deficiency the enzymes directly catalyze superoxide formation. Considering this alternative chemistry of each NOS, the effects of each single enzyme on key events of atherosclerosis are difficult to predict. Here, we evaluate nitric oxide and superoxide production by all three NOS isoforms in atherosclerosis. ESR measurements of circulating and vascular wall nitric oxide production showed significantly reduced nitric oxide levels in apoE/eNOS double knockout (dko) and apoE/iNOS dko animals but not in apoE/nNOS dko animals suggesting that eNOS and iNOS majorly contribute to vascular nitric oxide production in atherosclerosis. Pharmacological inhibition and genetic deletion of eNOS and iNOS reduced vascular superoxide production suggesting that eNOS and iNOS are uncoupled in atherosclerotic vessels. Though genetic deletion of nNOS did not alter superoxide production, acute inhibition of nNOS showed that nNOS contributes significantly to superoxide production. In conclusion, uncoupling of eNOS occurs in apoE ko atherosclerosis but eNOS mediated superoxide production does not outweigh the protective effects of eNOS mediated nitric oxide production. We show that although nNOS is not a major contributor of the vascular nitric oxide formation, it prevents atherosclerosis development. Acute inhibition of nNOS showed a significant reduction of superoxide formation suggesting that nNOS is uncoupled. The exact mechanism of action of nNOS in atheroprotection is yet to be elucidated. Genetic deletion of iNOS reduced NADPH oxidase activity. Thus, iNOS has both direct and indirect proatherosclerotic effects, as it directly generates both nitric oxide and superoxide simultaneously resulting in peroxynitrite formation and indirectly modulates NADPH oxidase activity. We hypothesize that eNOS is coupled in the disease free regions of the vessel and contributes to nitric oxide generation whereas in the diseased region of the vessel it is uncoupled to produce superoxide (Figure 16). nNOS expressed in the smooth muscle cells of the plaque contributes to the local superoxide generation. iNOS expressed in smooth muscle cells and leukocytes of the plaque generates superoxide and nitric oxide simultaneously to produce the strong oxidant peroxynitrite.}, subject = {atherosclerosis}, language = {en} } @phdthesis{Hallhuber2007, author = {Hallhuber, Matthias}, title = {Inhibition of Nuclear Import of Calcineurin Prevents the Development of Myocardial Hypertrophy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The Calcineurin/NFAT signaling cascade is a crucial transducer of cellular function. It has recently been emerged that in addition to the transcription factor NFAT, the phosphatase Calcineurin is also translocated to the nucleus. Our traditional understanding of Calcineurin activation via sustained high Ca2+-levels was also advanced by recent findings from this working group (AG Ritter), which showed that Calcineurin is activated by proteolysis of the C-terminal autoinhibitory domain. This leads to the constitutive activation and nuclear translocation of Calcineurin. Therefore, Calcineurin is not only responsible for dephosphorylating of NFAT in the cytosol thus enabling its nuclear import, its presence in the nucleus is also significant in ensuring the full transcriptional activity of NFAT. Formation of complexes between transcription factors and DNA regulates the transcriptional process. Therefore, the time that transcription factors remain nuclear is a major determinant of transcriptional activity. The movement of proteins over ~40 kDa into and out of the nucleus is governed by the nuclear pore complex (NPC). Transcription factors and enzymes that regulate the activity of these proteins are shuttled across the nuclear envelope by proteins that recognize nuclear localization signals (NLS) and nuclear export signals (NES) within the amino acid sequence of these transcription factors. In this study, the precise mechanisms of Calcineurin nuclear import and export were identified. Additionally to the nuclear localization sequence (NLS) and the nuclear export sequence (NES) within the sequence of Calcineurin, the respective nuclear cargo proteins, responsible for nuclear import, Importin\&\#946;1, and for nuclear export, CRM1, were identified. Inhibition of the Calcineurin/importin interaction by a competitive peptide, called Import Blocking Peptide (IBP), which mimicked the Calcineurin NLS, prevented nuclear entry of Calcineurin. A non-inhibitory control peptide showed no effect. Using this approach, it was able to prevent the development of myocardial hypertrophy. In Angiotensin II stimulated cardiomyocytes, both the transcriptional and the translational level was suppressed. Additionally, cell size and expression of Brain natriuretic peptide (as molecular marker for hypertrophy) were significantly reduced compared untreated controls. IBP worked dose-dependent, but did not affect the Calcineurin phosphatase activity. In conclusion, Calcineurin is not only capable of dephosphorylating NFAT, thus enabling its nuclear import, its presence in the nucleus is also important for full NFAT transcriptional activity. Using IBP to prevent the nuclear import of Calcineurin is a completely new approach to prevent the development of myocardial hypertrophy.}, language = {en} }