@article{IzquierdoKarolakPrabhakaranetal.2019, author = {Izquierdo, Manuel and Karolak, Michael and Prabhakaran, Dharmalingam and Boothroyd, Andrew T. and Scherz, Andreas O. and Lichtenstein, Alexander and Molodtsov, Serguei L.}, title = {Monitoring ultrafast metallization in LaCoO3 with femtosecond soft x-ray spectroscopy}, series = {Communications Physics}, volume = {2}, journal = {Communications Physics}, doi = {10.1038/s42005-019-0109-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323265}, year = {2019}, abstract = {The study of ultrafast dynamics is a new tool to understand and control the properties of correlated oxides. By enhancing some properties and realizing new dynamically excited phrases, this tool has opened new routes for technological applications. LaCoO3 is one paradigmatic example where the strong electron, spin, and lattice coupling induced by electronic correlations results in a low-temperature spin transition and a high-temperature semiconductor-to-metal transition that is still not completely understood. Here, we monitor ultrafast metallization in LaCoO3 using time-resolved soft x-ray reflectivity experiments. While the process is entangled at the Co L3 edge, the time information of the different channels is decrypted at different resonant energies of the O K edge. Metallization is shown to occur via transient electronic, spin, and lattice separation. Our results agree with the thermodynamical model and demonstrate the potential of femtosecond soft x-ray experiments at the O K edge to understand correlated oxides.}, language = {en} } @article{HolzingerSchneiderHoeflingetal.2019, author = {Holzinger, Steffen and Schneider, Christian and H{\"o}fling, Sven and Porte, Xavier and Reitzenstein, Stephan}, title = {Quantum-dot micropillar lasers subject to coherent time-delayed optical feedback from a short external cavity}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-36599-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322485}, year = {2019}, abstract = {We investigate the mode-switching dynamics of an electrically driven bimodal quantum-dot micropillar laser when subject to delayed coherent optical feedback from a short external cavity. We experimentally characterize how the external cavity length, being on the same order than the microlaser's coherence length, influences the spectral and dynamical properties of the micropillar laser. Moreover, we determine the relaxation oscillation frequency of the micropillar by superimposing optical pulse injection to a dc current. It is found that the optical pulse can be used to disturb the feedback-coupled laser within one roundtrip time in such a way that it reaches the same output power as if no feedback was present. Our results do not only expand the understanding of microlasers when subject to optical feedback from short external cavities, but pave the way towards tailoring the properties of this key nanophotonic system for studies in the quantum regime of self-feedback and its implementation to integrated photonic circuits.}, language = {en} } @article{HeilSchreiberGoetzetal.2018, author = {Heil, Hannah S. and Schreiber, Benjamin and G{\"o}tz, Ralph and Emmerling, Monika and Dabauvalle, Marie-Christine and Krohne, Georg and H{\"o}fling, Sven and Kamp, Martin and Sauer, Markus and Heinze, Katrin G.}, title = {Sharpening emitter localization in front of a tuned mirror}, series = {Light: Science \& Applications}, volume = {7}, journal = {Light: Science \& Applications}, doi = {10.1038/s41377-018-0104-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228080}, year = {2018}, abstract = {Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2,3,4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.}, language = {en} } @phdthesis{Wagner2024, author = {Wagner, Tim Matthias}, title = {Characterization of 2D antimony lattices}, doi = {10.25972/OPUS-36329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Two-dimensional lattices are in the focus of research in modern solid state physics due to their novel and exotic electronic properties with tremendous potential for seminal future applications. Of particular interest within this research field are quantum spin Hall insulators which are characterized by an insulating bulk with symmetry-protected metallic edge states. For electrons within these one-dimensional conducting channels, spin-momentum locking enables dissipationless transport - a property which promises nothing short of a revolution for electronic devices. So far, however, quantum spin Hall materials require enormous efforts to be realized such as cryogenic temperatures or ultra-high vacuum. A potential candidate to overcome these shortcomings are two-dimensional lattices of the topological semi-metal antimony due to their potential to host the quantum spin Hall effect while offering improved resilience against oxidation. In this work, two-dimensional lattices of antimony on different substrates, namely Ag(111), InSb(111) and SiC(0001), are investigated regarding their atomic structure and electronic properties with complimentary surface sensitive techniques. In addition, a systematic oxidation study compares the stability of Sb-SiC(0001) with that of the two-dimensional topological insulators bismuthene-SiC(0001) and indenene-SiC(0001). A comprehensive experimental analysis of the \((\sqrt{3}\times\sqrt{3})R30^\circ\) Sb-Ag(111) surface, including X-ray standing wave measurements, disproves the proclaimed formation of a buckled antimonene lattice in literature. The surface lattice can instead be identified as a metallic Ag\(_2\)Sb surface alloy. Antimony on InSb(111) shows an unstrained Volmer-Weber island growth due to its large lattice mismatch to the substrate. The concomitant moir\'{e} situation at the interface imprints mainly in a periodic height corrugation of the antimony islands which as observed with scanning tunneling microscopy. On islands with various thicknesses, quasiparticle interference patterns allow to trace the topological surface state of antimony down to the few-layer limit. On SiC(0001), two different two-dimensional antimony surface reconstructions are identified. Firstly, a metallic triangular \$1\times1\$ lattice which constitutes the antimony analogue to the topological insulator indenene. Secondly, an insulating asymmetric kagome lattice which represents the very first realized atomic surface kagome lattice. A comparative, systematic oxidation study of elemental (sub-)monolayer materials on SiC(0001) reveals a high sensitivity of indenene and bismuthene to small dosages of oxygen. An improved resilience is found for Sb-SiC(0001) which, however, oxidizes nevertheless if exposed to oxygen. These surface lattices are therefore not suitable for future applications without additional protective measures.}, subject = {Antimon}, language = {en} } @phdthesis{Kagerer2024, author = {Kagerer, Philipp Thomas}, title = {Two-Dimensional Ferromagnetism and Topology at the Surface of MnBi\(_2\)Te\(_4\) - Bi\(_2\)Te\(_3\) Heterostructures - MBE Growth, Magnetism and Electronic Properties}, doi = {10.25972/OPUS-36012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, a model system of a magnetic topological heterostructure is studied, namely a heterosystem consisting of a single ferromagnetic septuple-layer (SL) of \(MnBi_2Te_4\) on the surface of the three-dimensional topological insulator \(Bi_2Te_3\). Using MBE and developing a specialized experimental setup, the first part of this thesis deals with the growth of \(Bi_2Te_3\) and thin films of \(MnBi_2Te_4\) on \(BaF_2\)-substrates by the co-evaporation of its binary constituents. The structural analysis is conducted along several suitable probes such as X-ray diffraction (XRD, XRR), AFM and scanning tunnelling electron microscopy (STEM). It is furthermore found that the growth of a single septuple-layer of \(MnBi_2Te_4\) on the surface of \(Bi_2Te_3\) can be facilitated. By using X-ray absorption and circular magnetic dichroism (XAS, XMCD), the magnetic properties of \(MnBi_2Te_4\) are explored down to the monolayer limit. The layered nature of the vdW crystal and a strong uniaxial magnetocrystalline anisotropy establish stable out-of plane magnetic order at the surface of \(MnBi_2Te_4\), which is stable even down to the 2D limit. Pushing the material system to there, i.e. a single SL \(MnBi_2Te_4\) further allows to study the phase transition of this 2D ferromagnet and extract its critical behaviour with \(T_c \, = \, 14.89~k\) and \(\beta \, = \, 0.484\). Utilizing bulk crystals of the ferromagnetic \(Fe_3GeTe_2\) as substrate allows to influence, enhance and bias the magnetism in the single SL of \(MnBi_2Te_4\). By growing heterostructures of the type \(MnBi_2Te_4\) -- n layer \(Bi_2Te_3\) -- \(Fe_3GeTe_2\)for n between 0 and 2, it is shown, that a considerable magnetic coupling can be introduced between the \(MnBi_2Te_4\) top-layer and the substrate. Finally the interplay between topology and magnetism in the ferromagnetic extension is studied directly by angle-resolved photoemission spectroscopy. The heterostructure is found to host a linearly dispersing TSS at the centre of the Brillouin zone. Using low temperature and high-resolution ARPES a large magnetic gap opening of \(\sim\) 35 meV is found at the Dirac point of the TSS. By following its temperature evolution, it is apparent that the scaling behaviour coincides with the magnetic order parameter of the modified surface.}, subject = {Molekularstrahlepitaxie}, language = {en} } @article{ChinaBurrowsWangetal.2018, author = {China, Swarup and Burrows, Susannah M. and Wang, Bingbing and Harder, Tristan H. and Weis, Johannes and Tanarhte, Meryem and Rizzo, Luciana V. and Brito, Joel and Cirino, Glauber G. and Ma, Po-Lun and Cliff, John and Artaxo, Paulo and Gilles, Mary K. and Laskin, Alexander}, title = {Fungal spores as a source of sodium salt particles in the Amazon basin}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07066-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222492}, year = {2018}, abstract = {In the Amazon basin, particles containing mixed sodium salts are routinely observed and are attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere contribute at least 30\% (by number) to sodium salt particles in the central Amazon basin. Hydration experiments indicate that sodium content in fungal spores governs their growth factors. Modeling results suggest that fungal spores account for ~69\% (31-95\%) of the total sodium mass during the wet season and that their fractional contribution increases during nighttime. Contrary to common assumptions that sodium-containing aerosols originate primarily from marine sources, our results suggest that locally-emitted fungal spores contribute substantially to the number and mass of coarse particles containing sodium. Hence, their role in cloud formation and contribution to salt cycles and the terrestrial ecosystem in the Amazon basin warrant further consideration.}, language = {en} } @article{KernHaagsEggeretal.2023, author = {Kern, Christian S. and Haags, Anja and Egger, Larissa and Yang, Xiaosheng and Kirschner, Hans and Wolff, Susanne and Seyller, Thomas and Gottwald, Alexander and Richter, Mathias and de Giovannini, Umberto and Rubio, Angel and Ramsey, Michael G. and Bocquet, Fran{\c{c}}ois C. and Soubatch, Serguei and Tautz, F. Stefan and Puschnig, Peter and Moser, Simon}, title = {Simple extension of the plane-wave final state in photoemission: bringing understanding to the photon-energy dependence of two-dimensional materials}, series = {Physical Review Research}, volume = {5}, journal = {Physical Review Research}, number = {3}, doi = {10.1103/PhysRevResearch.5.033075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350330}, year = {2023}, abstract = {Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the plane-wave approximation, according to which photoelectrons propagate freely to the detector. The photoelectron momentum distribution is then essentially given by the Fourier transform of the real-space orbital. While the plane-wave approximation is remarkably successful in describing the momentum distributions of aromatic compounds, it generally fails to capture kinetic-energy-dependent final-state interference and dichroism effects. Focusing our present study on quasi-freestanding monolayer graphene as the archetypical two-dimensional (2D) material, we observe an exemplary E\(_{kin}\)-dependent modulation of, and a redistribution of spectral weight within, its characteristic horseshoe signature around the \(\bar {K}\) and \(\bar {K´}\) points: both effects indeed cannot be rationalized by the plane-wave final state. Our data are, however, in remarkable agreement with ab initio time-dependent density functional simulations of a freestanding graphene layer and can be explained by a simple extension of the plane-wave final state, permitting the two dipole-allowed partial waves emitted from the C 2p\(_z\) orbitals to scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux calibration of the Metrology Light Source, this scattered-wave approximation allows us to extract E\(_{kin}\)-dependent amplitudes and phases of both partial waves directly from photoemission data. The scattered-wave approximation thus represents a powerful yet intuitive refinement of the plane-wave final state in photoemission of 2D materials and beyond.}, language = {en} } @article{OPUS4-36018, title = {Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube}, series = {The Astrophysical Journal}, volume = {870}, journal = {The Astrophysical Journal}, number = {2}, publisher = {The American Astronomical Society}, organization = {The LIGO Scientific Collaboration and the Virgo Collaboration}, doi = {10.3847/1538-4357/aaf21d}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360189}, pages = {1-16}, year = {2019}, abstract = {Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.}, language = {en} } @article{SchadeBaderHuberetal.2023, author = {Schade, A. and Bader, A. and Huber, T. and Kuhn, S. and Czyszanowski, T. and Pfenning, A. and Rygała, M. and Smołka, T. and Motyka, M. and Sęk, G. and Hartmann, F. and H{\"o}fling, S.}, title = {Monolithic high contrast grating on GaSb/AlAsSb based epitaxial structures for mid-infrared wavelength applications}, series = {Optics Express}, volume = {31}, journal = {Optics Express}, number = {10}, doi = {10.1364/OE.487119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350346}, pages = {16025-16034}, year = {2023}, abstract = {We demonstrate monolithic high contrast gratings (MHCG) based on GaSb/AlAs0.08Sb0.92 epitaxial structures with sub-wavelength gratings enabling high reflection of unpolarized mid-infrared radiation at the wavelength range from 2.5 to 5 µm. We study the reflectivity wavelength dependence of MHCGs with ridge widths ranging from 220 to 984 nm and fixed 2.6 µm grating period and demonstrate that peak reflectivity of above 0.7 can be shifted from 3.0 to 4.3 µm for ridge widths from 220 to 984 nm, respectively. Maximum reflectivity of up to 0.9 at 4 µm can be achieved. The experiments are in good agreement with numerical simulations, confirming high process flexibility in terms of peak reflectivity and wavelength selection. MHCGs have hitherto been regarded as mirrors enabling high reflection of selected light polarization. With this work, we show that thoughtfully designed MHCG yields high reflectivity for both orthogonal polarizations simultaneously. Our experiment demonstrates that MHCGs are promising candidates to replace conventional mirrors like distributed Bragg reflectors to realize resonator based optical and optoelectronic devices such as resonant cavity enhanced light emitting diodes and resonant cavity enhanced photodetectors in the mid-infrared spectral region, for which epitaxial growth of distributed Bragg reflectors is challenging.}, language = {en} } @article{StebaniBlaimerZableretal.2023, author = {Stebani, Jannik and Blaimer, Martin and Zabler, Simon and Neun, Tilmann and Pelt, Dani{\"e}l M. and Rak, Kristen}, title = {Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-45466-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357411}, year = {2023}, abstract = {Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen (N = 43) and clinical practice (N = 9). The model robustness was further evaluated on three independent open-source datasets (N = 23 + 7 + 17 scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of 0.97 and 0.94, intersection-over-union scores of 0.94 and 0.89 and average Hausdorf distances of 0.065 and 0.14 voxel units were achieved. The landmark localization task was performed automatically with an average localization error of 3.3 and 5.2 voxel units. A robust, albeit reduced performance could be attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 mono-parametric variations of the basal architecture and training protocol provided task-optimal parameters for both categories. Ablation studies against single-task variants of the basal architecture showed a clear performance beneft of coupling landmark localization with segmentation and a dataset-dependent performance impact on segmentation ability.}, language = {en} }