@article{HornKellerHildebrandtetal.2016, author = {Horn, Hannes and Keller, Alexander and Hildebrandt, Ulrich and K{\"a}mpfer, Peter and Riederer, Markus and Hentschel, Ute}, title = {Draft genome of the \(Arabidopsis\) \(thaliana\) phyllosphere bacterium, \(Williamsia\) sp. ARP1}, series = {Standards in Genomic Sciences}, volume = {11}, journal = {Standards in Genomic Sciences}, number = {8}, doi = {10.1186/s40793-015-0122-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146008}, year = {2016}, abstract = {The Gram-positive actinomycete \(Williamsia\) sp. ARP1 was originally isolated from the \(Arabidopsis\) \(thaliana\) phyllosphere. Here we describe the general physiological features of this microorganism together with the draft genome sequence and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our knowledge, this is only the second reported genome from the genus \(Williamsia\) and the first sequenced strain from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the phyllosphere habitat.}, language = {en} } @misc{RostasRufZabkaetal.2008, author = {Rost{\´a}s, Michael and Ruf, Daniel and Zabka, Vanessa and Hildebrandt, Ulrich}, title = {Plant surface wax affects parasitoid's response to host footprints}, organization = {Michael Rost{\´a}s}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29201}, year = {2008}, abstract = {The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants (cer-za.126, cer-yp.949) and wild type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.}, subject = {Brackwespen}, language = {en} } @article{UteReisbergHildebrandtetal.2013, author = {Ute, Hentschel and Reisberg, Eva E. and Hildebrandt, Ulrich and Riederer, Markus}, title = {Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0078613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96699}, year = {2013}, abstract = {The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed "core" community) while others were positively or negatively affected by the wax mutant phenotype (termed "plant line-specific" community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria.}, language = {en} }