@article{AlrefaiMuhammadRudolfetal.2016, author = {Alrefai, Hani and Muhammad, Khalid and Rudolf, Ronald and Pham, Duong Anh Thuy and Klein-Hessling, Stefan and Patra, Amiya K. and Avots, Andris and Bukur, Valesca and Sahin,, Ugur and Tenzer, Stefan and Goebeler, Matthias and Kerstan, Andreas and Serfling, Edgar}, title = {NFATc1 supports imiquimod-induced skin inflammation by suppressing IL-10 synthesis in B cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms11724}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173053}, year = {2016}, abstract = {Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory human skin disease. Here we show that mice depleted of B cells or bearing interleukin (IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour necrosis factor-α and IL-17 by T cells. These data indicate a close link between NFATc1 and IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform, NFATc1/αA, as a potential target to treat human psoriasis.}, language = {en} } @article{KleinHesslingMuhammadKleinetal.2017, author = {Klein-Hessling, Stefan and Muhammad, Khalid and Klein, Matthias and Pusch, Tobias and Rudolf, Ronald and Fl{\"o}ter, Jessica and Qureischi, Musga and Beilhack, Andreas and Vaeth, Martin and Kummerow, Carsten and Backes, Christian and Schoppmeyer, Rouven and Hahn, Ulrike and Hoth, Markus and Bopp, Tobias and Berberich-Siebelt, Friederike and Patra, Amiya and Avots, Andris and M{\"u}ller, Nora and Schulze, Almut and Serfling, Edgar}, title = {NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {511}, doi = {10.1038/s41467-017-00612-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170353}, year = {2017}, abstract = {Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions.}, language = {en} } @article{KleinHesslingRudolfMuhammadetal.2016, author = {Klein-Hessling, Stefan and Rudolf, Ronald and Muhammad, Khalid and Knobeloch, Klaus-Peter and Maqbool, Muhammad Ahmad and Cauchy, Pierre and Andrau, Jean-Christophe and Avots, Andris and Talora, Claudio and Ellenrieder, Volker and Screpanti, Isabella and Serfling, Edgar and Patra, Amiya Kumar}, title = {A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms11841}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172974}, year = {2016}, abstract = {NFATc1 plays a critical role in double-negative thymocyte survival and differentiation. However, the signals that regulate Nfatc1 expression are incompletely characterized. Here we show a developmental stage-specific differential expression pattern of Nfatc1 driven by the distal (P1) or proximal (P2) promoters in thymocytes. Whereas, preTCR-negative thymocytes exhibit only P2 promoter-derived Nfatc1β expression, preTCR-positive thymocytes express both Nfatc1β and P1 promoter-derived Nfatc1α transcripts. Inducing NFATc1α activity from P1 promoter in preTCR-negative thymocytes, in addition to the NFATc1β from P2 promoter impairs thymocyte development resulting in severe T-cell lymphopenia. In addition, we show that NFATc1 activity suppresses the B-lineage potential of immature thymocytes, and consolidates their differentiation to T cells. Further, in the pTCR-positive DN3 cells, a threshold level of NFATc1 activity is vital in facilitating T-cell differentiation and to prevent Notch3-induced T-acute lymphoblastic leukaemia. Altogether, our results show NFATc1 activity is crucial in determining the T-cell fate of thymocytes.}, language = {en} } @article{MuhammadRudolfPhametal.2018, author = {Muhammad, Khalid and Rudolf, Ronald and Pham, Duong Anh Thuy and Klein-Hessling, Stefan and Takata, Katsuyoshi and Matsushita, Nobuko and Ellenrieder, Volker and Kondo, Eisaku and  Serfling, Edgar}, title = {Induction of Short NFATc1/αA Isoform Interferes with Peripheral B Cell Differentiation}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {32}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.00032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197501}, year = {2018}, abstract = {In lymphocytes, immune receptor signals induce the rapid nuclear translocation of preformed cytosolic NFAT proteins. Along with co-stimulatory signals, persistent immune receptor signals lead to high levels of NFATc1/αA, a short NFATc1 isoform, in effector lymphocytes. Whereas NFATc1 is not expressed in plasma cells, in germinal centers numerous centrocytic B cells express nuclear NFATc1/αA. When overexpressed in chicken DT40 B cells or murine WEHI 231 B cells, NFATc1/αA suppressed their cell death induced by B cell receptor signals and affected the expression of genes controlling the germinal center reaction and plasma cell formation. Among those is the Prdm1 gene encoding Blimp-1, a key factor of plasma cell formation. By binding to a regulatory DNA element within exon 1 of the Prdm1 gene, NFATc1/αA suppresses Blimp-1 expression. Since expression of a constitutive active version of NFATc1/αA interfered with Prdm1 RNA expression, LPS-mediated differentiation of splenic B cells to plasmablasts in vitro and reduced immunoglobulin production in vivo, one may conclude that NFATc1/αA plays an important role in controlling plasmablast/plasma cell formation.}, language = {en} } @phdthesis{Rudolf2013, author = {Rudolf, Ronald}, title = {Transcriptional Regulation of and by NFATc1 in Lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The transcription factor NFATc1 has been shown to regulate the activation and differentiation of T-cells and B-cells, of DCs and megakaryocytes. Dysregulation of NFAT signaling was shown to be associated with the generation of autoimmune diseases, malignant transformation and the development of cancer [71]. The primary goal of this work was to gain insights on Nfatc1 induction and regulation in lymphocytes and to find new direct NFATc1 target genes. Three new BAC -transgenic reporter mouse strains (tgNfatc1/Egfp, tgNfatc1/DE1 and tgNfatc1/DE2) were applied to analyze Nfatc1 induction and regulation in primary murine B- and T-cells. As a result, we were able to show the persistent requirement of immunoreceptor-signaling for constant Nfatc1 induction, particularly, for NFATc1/αA expression. Furthermore, we showed that NF-κB inducing agents, such as LPS, CpG or CD40 receptor engagement, in combination with primary receptor-signals, positively contributed to Nfact1 induction in B-cells [137]. We sought to establish a new system which could help to identify direct NFATc1 target genes by means of ChIP and NGS in genom-wide approaches. We were able to successfully generate a new BAC-transgene encoding a biotinylatable short isoform of NFATc1, which is currently injected into mice oocyte at the TFM in Mainz. In addition, in vivo biotinylatable NFATc1-isoforms were cloned and stably expressed in the murine B-cell lymphoma line WEHI-231. The successful use of these cells stably overexpressing either the short NFATc1/αA or the long NFATc1/βC isoform along with the bacterial BirA biotin ligase was confirmed by intracellular stainings, FACS analysis, confocal microscopy and protein IP. By NGS, we detected 2185 genes which are specifically controlled by NFATc1/αA, and 1306 genes which are exclusively controlled by NFATc1/βC. This shows that the Nfatc1 locus encodes "two genes" which exhibit alternate, in part opposite functions. Studies on the induction of apoptosis and cell-death revealed opposed roles for the highly inducible short isoform NFATc1/αA and the constantly expressed long isoform NFATc1/βC. These findings were confirmed by whole transcriptome-sequencing performed with cells overexpressing NFATc1/αA and NFATc1/βC. Several thousand genes were found to be significantly altered in their expression profile, preferentially genes involved in apoptosis and PCD for NFATc1/βC or genes involved in transcriptional regulation and cell-cycle processes for NFATc1/αA. In addition we were able to perform ChIP-seq for NFATc1/αA and NFATc1/βC in an ab-independent approach. We found potential new target-sites, but further studies will have to address this ambitious goal in the future. In individual ChIP assays, we showed direct binding of NFATc1/αA and NFATc1/βC to the Prdm1 and Aicda promoter regions which are individually controlled by the NFATc1 isoforms.}, subject = {Lymphozyt}, language = {en} } @misc{SerflingAvotsKleinHesslingetal.2012, author = {Serfling, Edgar and Avots, Andris and Klein-Hessling, Stefan and Rudolf, Ronald and Vaeth, Martin and Berberich-Siebelt, Friederike}, title = {NFATc1/alphaA: The other Face of NFAT Factors in Lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75748}, year = {2012}, abstract = {In effector T and B cells immune receptor signals induce within minutes a rise of intracellular Ca++, the activation of the phosphatase calcineurin and the translocation of NFAT transcription factors from cytosol to nucleus. In addition to this first wave of NFAT activation, in a second step the occurrence of NFATc1/αA, a short isoform of NFATc1, is strongly induced. Upon primary stimulation of lymphocytes the induction of NFATc1/αA takes place during the G1 phase of cell cycle. Due to an auto-regulatory feedback circuit high levels of NFATc1/αA are kept constant during persistent immune receptor stimulation. Contrary to NFATc2 and further NFATc proteins which dampen lymphocyte proliferation, induce anergy and enhance activation induced cell death (AICD), NFATc1/αA supports antigenmediated proliferation and protects lymphocytes against rapid AICD. Whereas high concentrations of NFATc1/αA can also lead to apoptosis, in collaboration with NF-κB-inducing co-stimulatory signals they support the survival of mature lymphocytes in late phases after their activation. However, if dysregulated, NFATc1/αA appears to contribute to lymphoma genesis and - as we assume - to further disorders of the lymphoid system. While the molecular details of NFATc1/αA action and its contribution to lymphoid disorders have to be investigated, NFATc1/αA differs in its generation and function markedly from all the other NFAT proteins which are expressed in lymphoid cells. Therefore, it represents a prime target for causal therapies of immune disorders in future.}, subject = {Medizin}, language = {en} } @article{SerflingRudolfBuschetal.2014, author = {Serfling, Edgar and Rudolf, Ronald and Busch, Rhoda and Patra, Amiya K. and Muhammad, Khalid and Avots, Andris and Andrau, Jean-Christophe and Klein-Hessling, Stefan}, title = {Architecture and expression of the Nfatc1 gene in lymphocytes}, doi = {10.3389/fimmu.2014.00021}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112718}, year = {2014}, abstract = {In lymphocytes, the three NFAT factors NFATc1 (also designated as NFAT2), NFATc2 (NFAT1), and NFATc3 (NFAT4 or NFATx) are expressed and are the targets of immune receptor signals, which lead to a rapid rise of intracellular Ca++, the activation of phosphatase calcineurin, and to the activation of cytosolic NFATc proteins. In addition to rapid activation of NFAT factors, immune receptor signals lead to accumulation of the short NFATc1/αA isoform in lymphocytes which controls their proliferation and survival. In this mini-review, we summarize our current knowledge on the structure and transcription of the Nfatc1 gene in lymphocytes, which is controlled by two promoters, two poly A addition sites and a remote downstream enhancer. The Nfatc1 gene resembles numerous primary response genes (PRGs) induced by LPS in macrophages. Similar to the PRG promoters, the Nfatc1 promoter region is organized in CpG islands, forms DNase I hypersensitive sites, and is marked by histone tail modifications before induction. By studying gene induction in lymphocytes in detail, it will be important to elucidate whether the properties of the Nfatc1 induction are not only typical for the Nfatc1 gene but also for other transcription factor genes expressed in lymphocytes.}, language = {en} }