@article{HackerHughesHofetal.1983, author = {Hacker, J{\"o}rg and Hughes, C. and Hof, H. and Goebel, W.}, title = {Cloned hemolysin genes from Escherichia coli that cause urinary tract infection determine different levels of toxicity in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59330}, year = {1983}, abstract = {After intraperitoneal injection of mice with Escherichia coli strains isolated from patients with urinary tract infections, the mortality due to hemolytic (Hly+) and nonhemolytic (Hiy-) isolates was 77 and 40\%, respectively. Deletion of the chromosomal hemolysin (h/y) determinant in an E. co/i 06:K15:H31 urinary tract infection strain led to a significant reduction in toxicity for mice, and its reintroduction on a recombinant plasmid partially restored the original toxicity. Although introduction of the cloned plasmid pHiy152-encoded hly determinant into the Hly- E. coli 06 mutant strain increased toxicity by only a marginal degree, transformation with the cloned chromosomal hly determinants from two E. coli strains of serotypes 018ac:K5:H- and 075:K95:H? resulted in markedly greater toxicity, even exceeding that of the original Hly+ E. coli 06 wild-type strain.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerKestlerHoschuetzkyetal.1993, author = {Hacker, J{\"o}rg and Kestler, H. and Hosch{\"u}tzky, H. and Jann, K. and Lottspeich, F. and Korhonen, T. K.}, title = {Cloning and characterization of the S fimbrial adhesin (SfaII) complex of an Escherichia coli O18:K1 meningitis isolate}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59853}, year = {1993}, abstract = {S fimbrial adbesins (Sfa), which are able to recognize sialic acid-containing receptors on eukaryotic cells, are produced by Escherichia coli strains causing urinary tract infections or newbom meningitis. We recently described tbe cloning and molecular cbaracterization of a determinant, termed sftJI, from the chromosome of an E. coli urinary tract infection strain. Herewe present data conceming a S fimbria-specific gene duster, designated sfall, of an E. coli newbom meningitis strain. Like tbe Sfal complex, Sfall consists of tbe major subunit protein SfaA (16 kDa) and the minor subunit proteins SfaG (17 kDa), SfaS (15 kDa), and SfaH (29 kDa). The genes encoding tbe subunit proteins of Sfall were identified and sequenced. Their protein sequences were calculated from the DNA sequences and compared with tbose of the Sfal complex subunits. Altbough the sequences ofthe two major SfaA subunits ditf'ered markedly, tbe sequences ofthe minor subunits sbowed only a few amino acid exchanges (SfaG, SfaH) or were completely identical (SfaS). The introduction of a site-specific mutation into the gene sfaSII and subsequent analysis of an SfaS-negative clone indicated that sfaSII codes for the sialic acid-specific adhesin of tbe meninigitis isolate. These data were confirmed by tbe isolation and characterization of tbe SfaSII protein and the determination of its N-terminal amino acid sequence. The identity between the sialic acid-specific adhesins of Sfal and Sfall revealed that difl'erences between the two Sfa complexes with respect to tbeir capacities to agglutinate erythrocytes must result from sequence alterations of subunit proteins other tban SfaS.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerKnappGoebel1983, author = {Hacker, J{\"o}rg and Knapp, S. and Goebel, W.}, title = {Spontaneous deletions and flanking regions of the chromosomal inherited hemolysin determinant of an Escherichia coli 06 strain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40260}, year = {1983}, abstract = {The hemolytic Escherichia coli strain 536 (06) propagates spontaneous hemolysin- negative mutants at relatively high rates (10-3 to 10-4 ). One type of mutant (type I) lacks both secreted (external) and periplasmic (internal) hemolysin activity (HlYex - IHlYin -) and in addition shows no mannose-resistant hemagglutination (Mrh -), whereas the other type (type II) is HlYex -IHIYin + and Mrh +. The genetic determinants for hemolysin production (hly) and for mannose-resistant hemagglutination (mrh) of this strain are located on the chromosome. Hybridization experiments with DNA probes specific for various parts of the hly determinant reveal that mutants of type I have lost the total hly determinant, whereas those of type 11 lack only part of the hlyB that is essential for transport of hemolysin across the outer membrane. Using a probe that contains the end sequence of the plasmid pHly152-encoded hly determinant (adjacent to hlyB), we determined that a related sequence flanks also the hlyB-distal end of the chromosomal hly determinant of E. coli 536. In addition several other similar or even identical sequences are found in the vicinity of the hlyC- and the hlyB-distal ends of both the chromosomal and the plasmid hly determinants.}, language = {en} } @article{HackerOttHof1993, author = {Hacker, J{\"o}rg and Ott, M. and Hof, H.}, title = {Effects of low, subinhibitory concentrations of antibiotics on expression of a virulence gene cluster of pathogenic E. coli by using a wild-type gene fusion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59874}, year = {1993}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{HackerOttLudwigetal.1991, author = {Hacker, J{\"o}rg and Ott, M. and Ludwig, B. and Rdest, U.}, title = {Intracellular survival and expression of virulence determinants of Legionella pneumophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59681}, year = {1991}, abstract = {Legionella pneumophila, the causative agent of Legionnaires' disease is able to live and multiply within macrophages as weil as within protozoan organisms. Legionella strains inhibit phagosome-lysosome fusion and phagosome acidification. By using two different cell culture systems, one derived from human macrophages and the other from human.embryo lung fibro:blastic cells, it is demonstrated that Legionella strains lose their virulence following cultivation in the laboratory. In order to study the mechanisms involved in intracellular survival of Legionella a genomic library of strain Legionella pneumophila Philadelphia I was established in Escherichia coli K-12. By cosmid cloning technique we were able to clone five putative virulence factors, two of which exhibit hemolytic activities and three of which represent membrane-associated proteins of 19, 26 and 60 kilodalton. One of the hemolytic proteins, termed legiolysin, represents a new toxin which specifically lyses human erythrocytes. The other hemolysin exhibits proteolytic properties in addition and is cytolytic for Vero and CHO cells. Further sturlies will be necessary to determine the exact role of the cloned proteins in the pathogenesis of Legionella. Zusammenfassung: Intrazellul{\"a}res {\"U}berleben}, subject = {Infektionsbiologie}, language = {en} } @article{HackerOttSchmidtetal.1986, author = {Hacker, J{\"o}rg and Ott, M. and Schmidt, G. and Hull, R. and Goebel, W.}, title = {Molecular cloning of the F8 fimbrial antigen from Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59391}, year = {1986}, abstract = {The genetic determinant coding for the Pspecific F8 fimbriae was cloned from ยท the chromosome of the Escherichia coli wild-type strain 2980 (018: K5: H5: FlC, F8). The F8 determinant was further subcloned into the Pstl site of pBR322 and a restriction map was established. In a Southern hybridization experiment identity between the chromosomally encoded F8 determinant of 2980 and its cloned Counterpart was demonstrated. The cloned F8 fimbri{\"a}e and those of the wild type strain consist of a protein subunit of nearly 20 kDa. F8 fimbriated strains were agglutinated by an F8 polyclonal antiserum, caused mannose-resistant hemagglutination and attached to human uroepi thellal cells. The cloned F8 determinant was weil expressed in a variety of host strains.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerOttBlumetal.1992, author = {Hacker, J{\"o}rg and Ott, Manfred and Blum, Gabriele and Marre, Reinhard and Heesemann, J{\"u}rgen and Tsch{\"a}pe, Helmut and Goebel, Werner}, title = {Genetics of Escherichia coli uropathogenicity: Analysis of the O6:K15:H31 isolate 536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71578}, year = {1992}, abstract = {E. coli strain 536 (06: K15: H31) isolated from a case of acute pyelonephritis, expresses S-fimbrial adhesins, P-related fimbriae, common type I fimbriae, and hemolysins. The respective chromosomally encoded determinants were cloned by constructing a genomic library of this strain. Furthermore, the strain produces the iron uptake substance, enterocheline, damages HeLa cells, and behaves in a serum-resistant mode. Genetic analysis of spontaneously arising non-hemolytic variants revealed that some of the virulence genes were physically linked to large unstable DNA regions, termed "pathogenicity islands", which were mapped in the respective positions on the E. coli K-12linkage map. By comparing the wild type strain and mutants in in vitro and in vivo assays, virulence features have been evaluated. In addition, a regulatory cross talk between adhesin determinants was found for the wild-type isolate. This particular mode of virulence regulation is missing in the mutant strain.}, subject = {Escherichia coli}, language = {en} } @article{HackerOttWintermeyeretal.1993, author = {Hacker, J{\"o}rg and Ott, Manfred and Wintermeyer, Eva and Ludwig, Birgit and Fischer, Gunter}, title = {Analysis of virulence factors of Legionella pneumophila.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70620}, year = {1993}, abstract = {Legionella pneumophila, the causative agent of Legionnaires' disease is a facultative intracellular bacterium, which in the course of human infection multiplies in lung macrophages predominantly manifesting as pneumonia. The natural habitat of Legionella is found in sweet water reservoirs and man-made water systems. Virulent L. pneumophila spontaneously convert to an avirulent status at a high frequency. Genetic approaches have led to the identification of various L. pneumophila genes. The mip (macrophage infectivity potentiator) determinant remains at present the sole established virulence factor. The Mip protein exhibits activity of a peptidyl prolyl cis trans isomerase (PPiase), an enzyme which is able to bind the immunosuppressant FK506 and is involved in protein folding. The recently cloned major outer membrane protein (MOMP) could play a role in the uptake of legionellae by macrophages. Cellular models are useful in studying the intracellular replication of legionellae in eukaryotic cells. Human celllines and protozoan models are appropriate for this purpose. By using U 937 macrophage-like cells and Acanthamoeba castellanii as hosts, we could discriminate virulent and avirulent L. pneumophila variants since only the virulent strain was capable of intracellular growth at 37 oc. By using these systems we further demonstrated that a hemolytic factor cloned and characterized in our laboratory, legiolysin (lly), had no influence on the intracellular growth of L. pneumophila.}, subject = {Legionella pneumophila}, language = {en} } @article{HackerRdestWintermeyeretal.1991, author = {Hacker, J{\"o}rg and Rdest, Ursula and Wintermeyer, E. and Ludwig, B.}, title = {Legiolysin, a New Hemolysin from L. pneumophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73070}, year = {1991}, abstract = {Legionella pneumophila generares exotoxins, cytolysins, proteases oc hemolysins that darnage host cells llke erythrocytes or rissue cu lrure cells. The gene for a new L. pneumophila hemolysin withour a proteolytic activiry was idemified, cloned in E. coli and sequenced. The gene producr was analysed by SDS-Polyacrylamide-gel-electrophoresis.}, subject = {H{\"a}molysin}, language = {en} } @article{HackerSchmidtHughesetal.1985, author = {Hacker, J{\"o}rg and Schmidt, G. and Hughes, C. and Knapp, S. and Marget, M. and Goebel, W.}, title = {Cloning and characterization of genes involved in the production of mannose-resistant, neuraminidase-susceptible (X) fimbriae from an uropathogenic O6:K15:K31 Escherichia coli strain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59353}, year = {1985}, abstract = {The Qropathogenic Escherichia coli strain 536 (06:K15:H31) exhibits a mannose-resistant hemagglutination phenotype (Mrh) with bovine erythrocytes and delayed Mrh with human and guinea pig erythrocytes. Neuraminidase treatment of the erythrocytes abolishes mannose resistant hemagglutination, which is typical for X fimbriae. E. coli strain 536 synthesizes two different fimbriae (Fim phenotype) prQtein subunits, 16.5 and 22 kilodaltons in size. In addition the strain shows mannose-sensitive hemagglutination and common type I (Fl) fimbriae. The cosmid clone E. coli K-12(pANN801) and another nine independently isolated Mrh+ cosmid clones derived from a cosmid gene bank of strain 536 express the 16.5-kilodalton protein band, bot not the 22-kilodalton protein, indicating an association of the Mrh+ property with the "16.5-kilodalton fimbriae." All cosmid clones were fimbriated, and they reacted with antiserum produced against Mrh+ fimbriae of the E. coli strain HB101(pANN801) and lacked mannose-sensitive hemagglutination (Fl) funbriae. From the Mrh fim cosmid DNA pANN801, several subclones coding for hemagglutination and X fimbriae were constructed. Subclones that express both hemagglutination and fimbriae and subclones that only code for the hemagglutination antigen were isolated; subclones that only produce fimbriae were not detected. By transposon Tn5 mutagenesis we demonstrated that about 6.5 kilobases of DNA is required for the Mrh+ Fim+ phenotype, and the 1.5- to 2-kilobase DNA region coding for the structural proteiil of the fimbriae has been mapped adjacent to the region responsible for the Mrh+ phenotype. Two different regions can thus be distinguished in the adhesion determinant, one coding for hemagglutination and the other coding for fimbria formation. Transformation of plasmid DNA from these subclones into a Mrh- Fim- mutant of E. coli 536 and into a galE (rough) strain of Salmonella typhimurium yielded transformants that expressed both hemagglutination and fimbria production.}, subject = {Infektionsbiologie}, language = {en} }