@article{BanGriesbeckTomićetal.2020, author = {Ban, Željka and Griesbeck, Stefanie and Tomić, Sanja and Nitsch, J{\"o}rn and Marder, Todd B. and Piantanida, Ivo}, title = {A Quadrupolar Bis-Triarylborane Chromophore as a Fluorimetric and Chirooptic Probe for Simultaneous and Selective Sensing of DNA, RNA and Proteins}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {10}, doi = {10.1002/chem.201903936}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208154}, pages = {2195-2203}, year = {2020}, abstract = {A water-soluble tetracationic quadrupolar bis-triarylborane chromophore showed strong binding to ds-DNA, ds-RNA, ss-RNA, as well as to the naturally most abundant protein, BSA. The novel dye can distinguish between DNA/RNA and BSA by fluorescence emission separated by Δv =3600 cm\(^{-1}\), allowing for the simultaneous quantification of DNA/RNA and protein (BSA) in a mixture. The applicability of such fluorimetric differentiation in vitro was demonstrated, strongly supporting a protein-like target as a dominant binding site of 1 in cells. Moreover, our dye also bound strongly to ss-RNA, with the unusual rod-like structure of the dye, decorated by four positive charges at its termini and having a hydrophobic core, acting as a spindle for wrapping A, C and U ss-RNAs, but not poly G, the latter preserving its secondary structure. To the best of our knowledge, such unmatched, multifaceted binding activity of a small molecule toward DNA, RNA, and proteins and the selectivity of its fluorimetric and chirooptic response makes the quadrupolar bis-triarylborane a novel chromophore/fluorophore moiety for biochemical applications.}, language = {en} } @article{BanKaračićTomićetal.2021, author = {Ban, Željka and Karačić, Zrinka and Tomić, Sanja and Amini, Hashem and Marder, Todd B. and Piantanida, Ivo}, title = {Triarylborane dyes as a novel non-covalent and non-inhibitive fluorimetric markers for DPP III enzyme}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {16}, issn = {1420-3049}, doi = {10.3390/molecules26164816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245046}, year = {2021}, abstract = {Novel dyes were prepared by simple "click CuAAC" attachment of a triarylborane-alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane-pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane-pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100-fold) fluorescence increase, whereby the triarylborane-pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non-covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates.}, language = {en} } @article{BarakDhimanSturmetal.2022, author = {Barak, Arvind and Dhiman, Nishant and Sturm, Floriane and Rauch, Florian and Lakshmanna, Yapamanu Adithya and Findlay, Karen S. and Beeby, Andrew and Marder, Todd B. and Umapathy, Siva}, title = {Excited-State Intramolecular Charge-Transfer Dynamics in 4-Dimethylamino-4′-cyanodiphenylacetylene: An Ultrafast Raman Loss Spectroscopic Perspective}, series = {ChemPhotoChem}, volume = {6}, journal = {ChemPhotoChem}, number = {12}, doi = {10.1002/cptc.202200146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312280}, year = {2022}, abstract = {Photo-initiated intramolecular charge transfer (ICT) processes play a pivotal role in the excited state reaction dynamics in donor-bridge-acceptor systems. The efficacy of such a process can be improved by modifying the extent of π-conjugation, relative orientation/twists of the donor/acceptor entities and polarity of the environment. Herein, 4-dimethylamino-4′-cyanodiphenylacetylene (DACN-DPA), a typical donor-π-bridge-acceptor system, was chosen to unravel the role of various internal coordinates that govern the extent of photo-initiated ICT dynamics. Transient absorption (TA) spectra of DACN-DPA in n-hexane exhibit a lifetime of >2 ns indicating the formation of a triplet state while, in acetonitrile, a short time-constant of ∼2 ps indicates the formation of charge transferred species. Ultrafast Raman loss spectroscopy (URLS) measurements show distinct temporal and spectral dynamics of Raman bands associated with C≡C and C=C stretching vibrations. The appearance of a new band at ∼1492 cm\(^{-1}\) in acetonitrile clearly indicates structural modification during the ultrafast ICT process. Furthermore, these observations are supported by TD-DFT computations.}, language = {en} } @article{BelaidiRauchZhangetal.2019, author = {Belaidi, Houmam and Rauch, Florian and Zhang, Zuolun and Latouche, Camille and Boucekkine, Abdou and Marder, Todd B. and Halet, Jean-Francois}, title = {Insights into the optical properties of triarylboranes with strongly electron-accepting bis(fluoromesityl)boryl groups: when theory meets experiment}, series = {ChemPhotoChem}, volume = {4}, journal = {ChemPhotoChem}, number = {3}, doi = {10.1002/cptc.201900256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205600}, pages = {173-180}, year = {2019}, abstract = {The photophysical properties (absorption, fluorescence and phosphorescence) of a series of triarylboranes of the form 4-D-C\(_6\)H\(_4\)-B(Ar)\(_2\) (D=\(^t\)Bu or NPh\(_2\); Ar=mesityl (Mes) or 2,4,6-tris(trifluoromethylphenyl (Fmes)) were analyzed theoretically using state-of-the-art DFT and TD-DFT methods. Simulated emission spectra and computed decay rate constants are in very good agreement with the experimental data. Unrestricted electronic computations including vibronic contributions explain the unusual optical behavior of 4-\(^t\)Bu-C\(_6\)H\(_4\)-B(Fmes)\(_2\) 2, which shows both fluorescence and phosphorescence at nearly identical energies (at 77 K in a frozen glass). Analysis of the main normal modes responsible for the phosphorescence vibrational fine structure indicates that the bulky tert-butyl group tethered to the phenyl ring is strongly involved. Interestingly, in THF solvent, the computed energies of the singlet and triplet excited states are very similar for compound 2 only, which may explain why 2 shows phosphorescence in contrast to the other members of the series.}, language = {en} } @article{BergerFergerMarder2021, author = {Berger, Sarina M. and Ferger, Matthias and Marder, Todd B.}, title = {Synthetic Approaches to Triarylboranes from 1885 to 2020}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {24}, doi = {10.1002/chem.202005302}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238952}, pages = {7043 -- 7058}, year = {2021}, abstract = {In recent years, research in the fields of optoelectronics, anion sensors and bioimaging agents have been greatly influenced by novel compounds containing triarylborane motifs. Such compounds possess an empty p-orbital at boron which results in useful optical and electronic properties. Such a diversity of applications was not expected when the first triarylborane was reported in 1885. Synthetic approaches to triarylboranes underwent various changes over the following century, some of which are still used in the present day, such as the generally applicable routes developed by Krause et al. in 1922, or by Grisdale et al. in 1972 at Eastman Kodak. Some other developments were not pursued further after their initial reports, such as the synthesis of two triarylboranes bearing three different aromatic groups by Mikhailov et al. in 1958. This review summarizes the development of synthetic approaches to triarylboranes from their first report nearly 135 years ago to the present.}, language = {en} } @article{BergerRueheSchwarzmannetal.2021, author = {Berger, Sarina M. and R{\"u}he, Jessica and Schwarzmann, Johannes and Phillipps, Alexandra and Richard, Ann-Katrin and Ferger, Matthias and Krummenacher, Ivo and Tumir, Lidija-Marija and Ban, Željka and Crnolatac, Ivo and Majhen, Dragomira and Barišić, Ivan and Piantanida, Ivo and Schleier, Domenik and Griesbeck, Stefanie and Friedrich, Alexandra and Braunschweig, Holger and Marder, Todd B.}, title = {Bithiophene-Cored, mono-, bis-, and tris-(Trimethylammonium)-Substituted, bis-Triarylborane Chromophores: Effect of the Number and Position of Charges on Cell Imaging and DNA/RNA Sensing}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {56}, doi = {10.1002/chem.202102308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256963}, pages = {14057-14072}, year = {2021}, abstract = {The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\). Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\) with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties.}, language = {en} } @article{BettsNagelSchatzschneideretal.2017, author = {Betts, Jonathan and Nagel, Christopher and Schatzschneider, Ulrich and Poole, Robert and La Ragione, Robert M.}, title = {Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br versus multidrug-resistant isolates of Avian Pathogenic \(Escherichia\) \(coli\) and its synergy with colistin}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0186359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173687}, year = {2017}, abstract = {Antimicrobial resistance is a growing global concern in human and veterinary medicine, with an ever-increasing void in the arsenal of clinicians. Novel classes of compounds including carbon monoxoide-releasing molecules (CORMs), for example the light-activated metal complex [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br, could be used as alternatives/to supplement traditional antibacterials. Avian pathogenic \(Escherichia\) \(coli\) (APEC) represent a large reservoir of antibiotic resistance and can cause serious clinical disease in poultry, with potential as zoonotic pathogens, due to shared serotypes and virulence factors with human pathogenic \(E.\) \(coli\). The \(in\) \(vitro\) activity of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br against multidrug-resistant APECs was assessed via broth microtitre dilution assays and synergy testing with colistin performed using checkerboard and time-kill assays. \(In\) \(vivo\) antibacterial activity of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br alone and in combination with colistin was determined using the \(Galleria\) \(mellonella\) wax moth larvae model. Animals were monitored for life/death, melanisation and bacterial numbers enumerated from larval haemolymph. \(In\) \(vitro\) testing produced relatively high [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br minimum inhibitory concentrations (MICs) of 1024 mg/L. However, its activity was significantly increased with the addition of colistin, bringing MICs down to \(\geq\)32 mg/L. This synergy was confirmed in time-kill assays. \(In\) \(vivo\) assays showed that the combination of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br with colistin produced superior bacterial killing and significantly increased larval survival. In both \(in\) \(vitro\) and \(in\) \(vivo\) assays light activation was not required for antibacterial activity. This data supports further evaluation of [Mn(CO)\(_3\)(tpa-\(\kappa^{3}N\))]Br as a potential agent for treatment of systemic infections in humans and animals, when used with permeabilising agents such as colistin.}, language = {en} } @article{BischoffRieferWirthensohnetal.2020, author = {Bischoff, Lisa A. and Riefer, Jarno and Wirthensohn, Raphael and Bischof, Tobias and Bertermann, R{\"u}diger and Ignat'ev, Nikolai V. and Finze, Maik}, title = {Pentafluoroethylaluminates: A Combined Synthetic, Spectroscopic, and Structural Study}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {60}, doi = {10.1002/chem.202000667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214666}, pages = {13615 -- 13620}, year = {2020}, abstract = {Salts of the tetrakis(pentafluoroethyl)aluminate anion [Al(C\(_{2}\)F\(_{5}\))\(_{2}\)]\(^{-}\) were obtained from AlCl\(_{3}\) and LiC\(_{2}\)F\(_{5}\). They were isolated with different counter-cations and characterized by NMR and vibrational spectroscopy and mass spectrometry. Degradation of the [Al(C\(_{2}\)F\(_{5}\))\(_{4}\)]\(^{-}\) ion was found to proceed via 1,2-fluorine shifts and stepwise loss of CF(CF\(_{3}\)) under formation of [(C\(_{2}\)F\(_{5}\))\(_{4-n}\)AlF\(_{n}\)]- (n=1-4) as assessed by NMR spectroscopy and mass spectrometry and supported by results of DFT calculations. In addition, the [(C\(_{2}\)F\(_{5}\))AlF\(_{3}\)]\(^{-}\) ion was structurally characterized.}, language = {en} } @article{BrammerBlankeKellneretal.2022, author = {Brammer, Jan C. and Blanke, Gerd and Kellner, Claudia and Hoffmann, Alexander and Herres-Pawlis, Sonja and Schatzschneider, Ulrich}, title = {TUCAN: A molecular identifier and descriptor applicable to the whole periodic table from hydrogen to oganesson}, series = {Journal of Cheminformatics}, volume = {14}, journal = {Journal of Cheminformatics}, number = {1}, issn = {1758-2946}, doi = {10.1186/s13321-022-00640-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299730}, year = {2022}, abstract = {TUCAN is a canonical serialization format that is independent of domain-specific concepts of structure and bonding. The atomic number is the only chemical feature that is used to derive the TUCAN format. Other than that, the format is solely based on the molecular topology. Validation is reported on a manually curated test set of molecules as well as a library of non-chemical graphs. The serialization procedure generates a canonical "tuple-style" output which is bidirectional, allowing the TUCAN string to serve as both identifier and descriptor. Use of the Python NetworkX graph library facilitated a compact and easily extensible implementation.}, language = {en} } @article{BraunschweigArnoldGruss2011, author = {Braunschweig, Holger and Arnold, Thomas and Gruss, Katrin}, title = {cyclo-Tri-mu-oxido-tris{[(eta 5,eta 5)-1,2-bis(cyclopentadienyl)-1,1,2,2-tetramethyldisilane]zirconium(IV)}: atrimeric disila-bridged oxidozirconocene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74737}, year = {2011}, abstract = {no abstract available}, subject = {Chemie}, language = {en} }