@article{BruecknerFantuzziStennettetal.2021, author = {Br{\"u}ckner, Tobias and Fantuzzi, Felipe and Stennett, Tom E. and Krummenacher, Ivo and Dewhurst, Rian D. and Engels, Bernd and Braunschweig, Holger}, title = {Isolation of neutral, mono-, and dicationic B\(_2\)P\(_2\) rings by diphosphorus addition to a boron-boron triple bond}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {24}, doi = {10.1002/anie.202102218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256451}, pages = {13661-13665}, year = {2021}, abstract = {The NHC-stabilised diboryne (B\(_2\)(SIDep)\(_2\); SIDep=1,3-bis(2,6-diethylphenyl)imidazolin-2-ylidene) undergoes a high-yielding P-P bond activation with tetraethyldiphosphine at room temperature to form a B\(_2\)P\(_2\) heterocycle via a diphosphoryldiborene by 1,2-diphosphination. The heterocycle can be oxidised to a radical cation and a dication, respectively, depending on the oxidant used and its counterion. Starting from the planar, neutral 1,3-bis(alkylidene)-1,3-diborata-2,4-diphosphoniocyclobutane, each oxidation step leads to decreased B-B distances and loss of planarity by cationisation. X-ray analyses in conjunction with DFT and CASSCF/NEVPT2 calculations reveal closed-shell singlet, butterfly-shaped structures for the NHC-stabilised dicationic B\(_2\)P\(_2\) rings, with their diradicaloid, planar-ring isomers lying close in energy.}, language = {en} } @article{BruecknerDewhurstDellermannetal.2019, author = {Br{\"u}ckner, Tobias and Dewhurst, Rian D. and Dellermann, Theresa and M{\"u}ller, Marcel and Braunschweig, Holger}, title = {Mild synthesis of diboryldiborenes by diboration of B-B triple bonds}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, doi = {10.1039/C9SC02544H}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186306}, pages = {7375-7378}, year = {2019}, abstract = {A set of diboryldiborenes are prepared by the mild, catalyst-free, room-temperature diboration of the B-B triple bonds of doubly base-stabilized diborynes. Two of the product diboryldiborenes are found to be air- and water-stable in the solid state, an effect that is attributed to their high crystallinity and extreme insolubility in a wide range of solvents.}, language = {en} } @article{BruneckerMuessigArrowsmithetal.2020, author = {Brunecker, Carina and M{\"u}ssig, Jonas H. and Arrowsmith, Merle and Fantuzzi, Felipe and Stoy, Andreas and B{\"o}hnke, Julian and Hofmann, Alexander and Bertermann, R{\"u}diger and Engels, Bernd and Braunschweig, Holger}, title = {Boranediyl- and Diborane(4)-1,2-diyl-Bridged Platinum A-Frame Complexes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {39}, doi = {10.1002/chem.202001168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214707}, pages = {8518 -- 8523}, year = {2020}, abstract = {Diplatinum A-frame complexes with a bridging (di)boron unit in the apex position were synthesized in a single step by the double oxidative addition of dihalo(di)borane precursors at a bis(diphosphine)-bridged Pt\(^{0}\)\(_{2}\) complex. While structurally analogous to well-known μ-borylene complexes, in which delocalized dative three-center-two-electron M-B-M bonding prevails, theoretical investigations into the nature of Pt-B bonding in these A-frame complexes show them to be rare dimetalla(di)boranes displaying two electron-sharing Pt-B σ-bonds. This is experimentally reflected in the low kinetic stability of these compounds, which are prone to loss of the (di)boron bridgehead unit.}, language = {en} } @article{BergerRueheSchwarzmannetal.2021, author = {Berger, Sarina M. and R{\"u}he, Jessica and Schwarzmann, Johannes and Phillipps, Alexandra and Richard, Ann-Katrin and Ferger, Matthias and Krummenacher, Ivo and Tumir, Lidija-Marija and Ban, Željka and Crnolatac, Ivo and Majhen, Dragomira and Barišić, Ivan and Piantanida, Ivo and Schleier, Domenik and Griesbeck, Stefanie and Friedrich, Alexandra and Braunschweig, Holger and Marder, Todd B.}, title = {Bithiophene-Cored, mono-, bis-, and tris-(Trimethylammonium)-Substituted, bis-Triarylborane Chromophores: Effect of the Number and Position of Charges on Cell Imaging and DNA/RNA Sensing}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {56}, doi = {10.1002/chem.202102308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256963}, pages = {14057-14072}, year = {2021}, abstract = {The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\). Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\) with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties.}, language = {en} } @article{BachmannHelbigCrumbachetal.2022, author = {Bachmann, Jonas and Helbig, Andreas and Crumbach, Merian and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {63}, doi = {10.1002/chem.202202455}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293926}, year = {2022}, abstract = {A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2′-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.}, language = {en} } @article{AnsellKostakisBraunschweigetal.2016, author = {Ansell, Melvyn B. and Kostakis, George E. and Braunschweig, Holger and Navarro, Oscar and Spencer, John}, title = {Synthesis of functionalized hydrazines: facile homogeneous (N-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes}, series = {Advanced Synthesis \& Catalysis}, volume = {358}, journal = {Advanced Synthesis \& Catalysis}, number = {23}, doi = {10.1002/adsc.201601106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186582}, pages = {3765-3769}, year = {2016}, abstract = {The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex Pd(ITMe)\(_2\)(PhCCPh)] (ITMe=1,3,4,5-tetramethylimidazol-2-ylidene) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions.}, language = {en} }