@article{StegnervanEeuwijkAngayetal.2017, author = {Stegner, David and van Eeuwijk, Judith M.M. and Angay, Oğuzhan and Gorelashvili, Maximilian G. and Semeniak, Daniela and Pinnecker, J{\"u}rgen and Schmithausen, Patrick and Meyer, Imke and Friedrich, Mike and D{\"u}tting, Sebastian and Brede, Christian and Beilhack, Andreas and Schulze, Harald and Nieswandt, Bernhard and Heinze, Katrin G.}, title = {Thrombopoiesis is spatially regulated by the bone marrow vasculature}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {127}, doi = {10.1038/s41467-017-00201-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170591}, year = {2017}, abstract = {In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts.}, language = {en} } @article{StegnerKlausNieswandt2019, author = {Stegner, David and Klaus, Vanessa and Nieswandt, Bernhard}, title = {Platelets as modulators of cerebral ischemia/reperfusion injury}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2505}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.02505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195748}, year = {2019}, abstract = {Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, the rapid recanalization of occluded cranial vessels is the primary therapeutic aim. However, experimental data (obtained using mostly the transient middle cerebral artery occlusion model) indicates that progressive stroke can still develop despite successful recanalization, a process termed "reperfusion injury." Mounting experimental evidence suggests that platelets and T cells contribute to cerebral ischemia/reperfusion injury, and ischemic stroke is increasingly considered a thrombo-inflammatory disease. The interaction of von Willebrand factor and its receptor on the platelet surface, glycoprotein Ib, as well as many activatory platelet receptors and platelet degranulation contribute to secondary infarct growth in this setting. In contrast, interference with GPIIb/IIIa-dependent platelet aggregation and thrombus formation does not improve the outcome of acute brain ischemia but dramatically increases the susceptibility to intracranial hemorrhage. Here, we summarize the current understanding of the mechanisms and the potential translational impact of platelet contributions to cerebral ischemia/reperfusion injury.}, language = {en} } @phdthesis{Spindler2020, author = {Spindler, Markus}, title = {The role of the adhesion and degranulation promoting adapter protein (ADAP) in platelet production}, doi = {10.25972/OPUS-20097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Although this process is fundamental to maintain normal platelet counts in circulation only little is known about the regulation of directed proplatelet formation. As revealed in this thesis, ADAP (adhesion and degranulation promoting adapter protein) deficiency (constitutive as well as MK and platelet-specific) resulted in a microthrombocytopenia in mice, recapitulating the clinical hallmark of patients with mutations in the ADAP gene. The thrombocytopenia was caused by a combination of an enhanced removal of platelets from the circulation by macrophages and a platelet production defect. This defect led to an ectopic release of (pro)platelet-like particles into the bone marrow compartment, with a massive accumulation of such fragments around sinusoids. In vitro studies of cultured BM cell-derived MKs revealed a polarization defect of the demarcation membrane system, which is dependent on F-actin dynamics. ADAP-deficient MKs spread on collagen and fibronectin displayed a reduced F-actin content and podosome density in the lowest confocal plane. In addition, ADAP-deficient MKs exhibited a reduced capacity to adhere on Horm collagen and in line with that the activation of beta1-integrins in the lowest confocal plane of spread MKs was diminished. These results point to ADAP as a novel regulator of terminal platelet formation. Beside ADAP-deficient mice, three other knockout mouse models (deficiency for profilin1 (PFN1), Wiskott-Aldrich-syndrome protein (WASP) and Actin-related protein 2/3 complex subunit 2 (ARPC2)) exist, which display ectopic release of (pro)platelet-like particles. As shown in the final part of the thesis, the pattern of the ectopic release of (pro)platelet-like particles in these genetically modified mice (PFN1 and WASP) was comparable to ADAP-deficient mice. Furthermore, all tested mutant MKs displayed an adhesion defect as well as a reduced podosome density on Horm collagen. These results indicate that similar mechanisms might apply for ectopic release.}, language = {en} } @article{SimsekyilmazLiehnWeinandyetal.2016, author = {Simsekyilmaz, Sakine and Liehn, Elisa A. and Weinandy, Stefan and Schreiber, Fabian and Megens, Remco T. A. and Theelen, Wendy and Smeets, Ralf and Jockenh{\"o}vel, Stefan and Gries, Thomas and M{\"o}ller, Martin and Klee, Doris and Weber, Christian and Zernecke, Alma}, title = {Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0155829}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179745}, year = {2016}, abstract = {Atherosclerotic lesions that critically narrow the artery can necessitate an angioplasty and stent implantation. Long-term therapeutic effects, however, are limited by excessive arterial remodeling. We here employed a miniaturized nitinol-stent coated with star-shaped polyethylenglycole (star-PEG), and evaluated its bio-functionalization with RGD and CXCL1 for improving in-stent stenosis after implantation into carotid arteries of mice. Nitinol foils or stents (bare metal) were coated with star-PEG, and bio-functionalized with RGD, or RGD/CXCL1. Cell adhesion to star-PEG-coated nitinol foils was unaltered or reduced, whereas bio-functionalization with RGD but foremost RGD/CXCL1 increased adhesion of early angiogenic outgrowth cells (EOCs) and endothelial cells but not smooth muscle cells when compared with bare metal foils. Stimulation of cells with RGD/CXCL1 furthermore increased the proliferation of EOCs. In vivo, bio-functionalization with RGD/CXCL1 significantly reduced neointima formation and thrombus formation, and increased re-endothelialization in apoE\(^{-/-}\) carotid arteries compared with bare-metal nitinol stents, star-PEG-coated stents, and stents bio-functionalized with RGD only. Bio-functionalization of star-PEG-coated nitinol-stents with RGD/CXCL1 reduced in-stent neointima formation. By supporting the adhesion and proliferation of endothelial progenitor cells, RGD/CXCL1 coating of stents may help to accelerate endothelial repair after stent implantation, and thus may harbor the potential to limit the complication of in-stent restenosis in clinical approaches.}, language = {en} } @phdthesis{Semeniak2018, author = {Semeniak, Daniela}, title = {Role of bone marrow extracellular matrix proteins on platelet biogenesis and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155857}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Platelets, small anucleated blood cells responsible for hemostasis, interact at sights of injury with several exposed extracellular matrix (ECM) proteins through specific receptors. Ligand binding leads to activation, adhesion and aggregation of platelets. Already megakaryocytes (MKs), the immediate precursor cells in bone marrow (BM), are in constant contact to these ECM proteins (ECMP). The interaction of ECMP with MKs is, in contrast to platelets, less well understood. It is therefore important to study how MKs interact with sinusoids via the underlying ECMP. This thesis addresses three major topics to elucidate these interactions and their role in platelet biogenesis. First, we studied the topology of ECMP within BM and their impact on proplatelet formation (PPF) in vitro. By establishing a four-color immunofluorescence microscopy we localized collagens and other ECMP and determined their degree of contact towards vessels and megakaryocytes (MKs). In in vitro assays we could demonstrate that Col I mediates increased MK adhesion, but inhibits PPF by collagen receptor GPVI. By immunoblot analyses we identified that the signaling events underyling this inhibition are different from those in platelet activation at the Src family kinase level. Second, we determined the degree of MK-ECM interaction in situ using confocal laser scanning microscopy of four-color IF-stained femora and spleen sections. In transgenic mouse models lacking either of the two major collagen receptors we could show that these mice have an impaired association of MKs to collagens in the BM, while the MK count in spleen increased threefold. This might contribute to the overall unaltered platelet counts in collagen receptor-deficient mice. In a third approach, we studied how the equilibrium of ECMP within BM is altered after irradiation. Collagen type IV and laminin-α5 subunits were selectively degraded at the sinusoids, while the matrix degrading protease MMP9 was upregulated in MKs. Platelet numbers decreased and platelets became hyporesponsive towards agonists, especially those for GPVI activation. Taken together, the results indicate that MK-ECM interaction differs substantially from the well-known platelet-ECM signaling. Future work should further elucidate how ECMP can be targeted to ameliorate the platelet production and function defects, especially in patients after BM irradiation.}, subject = {Knochenmark}, language = {en} } @article{SchaeferZernecke2020, author = {Sch{\"a}fer, Sarah and Zernecke, Alma}, title = {CD8\(^+\) T cells in atherosclerosis}, series = {Cells}, volume = {10}, journal = {Cells}, number = {1}, issn = {2073-4409}, doi = {10.3390/cells10010037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220170}, year = {2020}, abstract = {Atherosclerotic lesions are populated by cells of the innate and adaptive immune system, including CD8\(^+\) T cells. The CD8\(^+\) T cell infiltrate has recently been characterized in mouse and human atherosclerosis and revealed activated, cytotoxic, and possibly dysfunctional and exhausted cell phenotypes. In mouse models of atherosclerosis, antibody-mediated depletion of CD8\(^+\) T cells ameliorates atherosclerosis. CD8\(^+\) T cells control monopoiesis and macrophage accumulation in early atherosclerosis. In addition, CD8\(^+\) T cells exert cytotoxic functions in atherosclerotic plaques and contribute to macrophage cell death and necrotic core formation. CD8\(^+\) T cell activation may be antigen-specific, and epitopes of atherosclerosis-relevant antigens may be targets of CD8\(^+\) T cells and their cytotoxic activity. CD8\(^+\) T cell functions are tightly controlled by costimulatory and coinhibitory immune checkpoints. Subsets of regulatory CD25\(^+\)CD8\(^+\) T cells with immunosuppressive functions can inhibit atherosclerosis. Importantly, local cytotoxic CD8\(^+\) T cell responses may trigger endothelial damage and plaque erosion in acute coronary syndromes. Understanding the complex role of CD8\(^+\) T cells in atherosclerosis may pave the way for defining novel treatment approaches in atherosclerosis. In this review article, we discuss these aspects, highlighting the emerging and critical role of CD8\(^+\) T cells in atherosclerosis.}, language = {en} } @phdthesis{Schurr2023, author = {Schurr, Yvonne}, title = {Studies on the role of cytoskeletal-regulatory and -crosslinking proteins in platelet function}, doi = {10.25972/OPUS-21892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218924}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Cytoskeletal reorganization in platelets is highly regulated and important for proper platelet function during activation and aggregation at sites of vascular injury. In this thesis, the role of three different cytoskeletal-regulatory and -crosslinking proteins was studied in platelet physiology using megakaryocyte- and platelet-specific knockout mice. The generation of branched actin filaments is regulated by nucleation promoting factors (NPF) and the Arp2/3 complex. (1.) The WAVE complex is a NPF, which upregulates the Arp2/3 complex activity at the plasma membrane. As shown in this thesis, the loss of the WAVE complex subunit Cyfip1 in mice did not alter platelet production and had only a minor impact on platelet activation. However, Cyfip1 played an essential role for branching of actin filaments and consequently for lamellipodia formation in vitro. The importance of lamellipodia for thrombus formation and stability has been controversially discussed. Cyfip1-deficient platelets were able to form a stable thrombus ex vivo and in vivo and a hemostatic plug comparable to controls. Moreover, Cyfip1-deficient mice maintained vascular integrity at the site of inflammation. These data show that platelet lamellipodia formation is not required for hemostatic function and pathophysiological thrombus formation. (2.) The WASH complex is another NPF, which mediates actin filament polymerization on endosomal vesicles via the Arp2/3 complex. Loss of the WASH complex subunit Strumpellin led to a decreased protein abundance of the WASH protein and to a 20\% reduction in integrin αIIbβ3 surface expression on platelets and megakaryocytes, whereas the expression of other surface receptors as well as the platelet count, size, ex vivo thrombus formation and bleeding time remained unaltered. These data point to a distinct role of Strumpellin in maintaining integrin αIIbβ3 expression and provide new insights into regulatory mechanisms of platelet integrins. (3.) MACF1 has been described as a cytoskeletal crosslinker of microtubules and F-actin. However, MACF1-deficient mice displayed no alterations in platelet production, activation, thrombus formation and hemostatic function. Further, no compensatory up- or downregulation of other proteins could be found that contain an F-actin- and a microtubule-binding domain. These data indicate that MACF1 is dispensable for platelet biogenesis, activation and thrombus formation. Nevertheless, functional redundancy among different proteins mediating the cytoskeletal crosstalk may exist.}, subject = {Cytoskeleton}, language = {en} } @article{SchuhmannKraftBieberetal.2019, author = {Schuhmann, Michael K. and Kraft, Peter and Bieber, Michael and Kollikowski, Alexander M. and Schulze, Harald and Nieswandt, Bernhard and Pham, Mirko and Stegner, David and Stoll, Guido}, title = {Targeting platelet GPVI plus rt-PA administration but not α2β1-mediated collagen binding protects against ischemic brain damage in mice}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms20082019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201700}, year = {2019}, abstract = {Platelet collagen interactions at sites of vascular injuries predominantly involve glycoprotein VI (GPVI) and the integrin α2β1. Both proteins are primarily expressed on platelets and megakaryocytes whereas GPVI expression is also shown on endothelial and integrin α2β1 expression on epithelial cells. We recently showed that depletion of GPVI improves stroke outcome without increasing the risk of cerebral hemorrhage. Genetic variants associated with higher platelet surface integrin α2 (ITGA2) receptor levels have frequently been found to correlate with an increased risk of ischemic stroke in patients. However until now, no preclinical stroke study has addressed whether platelet integrin α2β1 contributes to the pathophysiology of ischemia/reperfusion (I/R) injury. Focal cerebral ischemia was induced in C57BL/6 and Itga2\(^{-/-}\) mice by a 60 min transient middle cerebral artery occlusion (tMCAO). Additionally, wild-type animals were pretreated with anti-GPVI antibody (JAQ1) or Fab fragments of a function blocking antibody against integrin α2β1 (LEN/B). In anti-GPVI treated animals, intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment was applied immediately prior to reperfusion. Stroke outcome, including infarct size and neurological scoring was determined on day 1 after tMCAO. We demonstrate that targeting the integrin α2β1 (pharmacologic; genetic) did neither reduce stroke size nor improve functional outcome on day 1 after tMCAO. In contrast, depletion of platelet GPVI prior to stroke was safe and effective, even when combined with rt-PA treatment. Our results underscore that GPVI, but not ITGA2, is a promising and safe target in the setting of ischemic stroke.}, language = {en} } @article{SchuhmannGuthmannStolletal.2017, author = {Schuhmann, Michael K. and Guthmann, Josua and Stoll, Guido and Nieswandt, Bernhard and Kraft, Peter and Kleinschnitz, Christoph}, title = {Blocking of platelet glycoprotein receptor Ib reduces "thrombo-inflammation" in mice with acute ischemic stroke}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {18}, doi = {10.1186/s12974-017-0792-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157582}, year = {2017}, abstract = {Background: Ischemic stroke causes a strong inflammatory response that includes T cells, monocytes/macrophages, and neutrophils. Interaction of these immune cells with platelets and endothelial cells facilitates microvascular dysfunction and leads to secondary infarct growth. We recently showed that blocking of platelet glycoprotein (GP) receptor Ib improves stroke outcome without increasing the risk of intracerebral hemorrhage. Until now, it has been unclear whether GPIb only mediates thrombus formation or also contributes to the pathophysiology of local inflammation. Methods: Focal cerebral ischemia was induced in C57BL/6 mice by a 60-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab). Rat immunoglobulin G (IgG) Fab was used as control treatment. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 1 after tMCAO. Results: Blocking of GPIb reduced stroke size and improved functional outcome on day 1 after tMCAO without increasing the risk of intracerebral hemorrhage. As expected, disruption of GPIb-mediated pathways in platelets significantly reduced thrombus burden in the cerebral microvasculature. In addition, inhibition of GPIb limited the local inflammatory response in the ischemic brain as indicated by lower numbers of infiltrating T cells and macrophages and lower expression levels of inflammatory cytokines compared with rat IgG Fab-treated controls. Conclusion: In acute ischemic stroke, thrombus formation and inflammation are closely intertwined ("thrombo-inflammation"). Blocking of platelet GPIb can ameliorate thrombo-inflammation.}, language = {en} } @article{SchuhmannBieberFrankeetal.2021, author = {Schuhmann, Michael K. and Bieber, Michael and Franke, Maximilian and Kollikowski, Alexander M. and Stegner, David and Heinze, Katrin G. and Nieswandt, Bernhard and Pham, Mirko and Stoll, Guido}, title = {Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice}, series = {Journal of Neuroinflammation}, volume = {18}, journal = {Journal of Neuroinflammation}, number = {1}, doi = {10.1186/s12974-021-02095-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259172}, pages = {46}, year = {2021}, abstract = {Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1\(^{-/-}\) mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization.}, language = {en} }