@article{KarakStepanenkoAddicoatetal.2022, author = {Karak, Suvendu and Stepanenko, Vladimir and Addicoat, Matthew A. and Keßler, Philipp and Moser, Simon and Beuerle, Florian and W{\"u}rthner, Frank}, title = {A Covalent Organic Framework for Cooperative Water Oxidation}, series = {Journal of the American Chemical Society}, volume = {144}, journal = {Journal of the American Chemical Society}, number = {38}, issn = {0002-7863}, doi = {10.1021/jacs.2c07282}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287591}, pages = {17661-17670}, year = {2022}, abstract = {The future of water-derived hydrogen as the "sustainable energy source" straightaway bets on the success of the sluggish oxygen-generating half-reaction. The endeavor to emulate the natural photosystem II for efficient water oxidation has been extended across the spectrum of organic and inorganic combinations. However, the achievement has so far been restricted to homogeneous catalysts rather than their pristine heterogeneous forms. The poor structural understanding and control over the mechanistic pathway often impede the overall development. Herein, we have synthesized a highly crystalline covalent organic framework (COF) for chemical and photochemical water oxidation. The interpenetrated structure assures the catalyst stability, as the catalyst's performance remains unaltered after several cycles. This COF exhibits the highest ever accomplished catalytic activity for such an organometallic crystalline solid-state material where the rate of oxygen evolution is as high as ∼26,000 μmol L\(^{-1}\) s\(^{-1}\) (second-order rate constant k ≈ 1650 μmol L s\(^{-1}\) g\(^{-2}\)). The catalyst also proves its exceptional activity (k ≈ 1600 μmol L s\(^{-1}\) g\(^{-2}\)) during light-driven water oxidation under very dilute conditions. The cooperative interaction between metal centers in the crystalline network offers 20-30-fold superior activity during chemical as well as photocatalytic water oxidation as compared to its amorphous polymeric counterpart.}, language = {en} } @article{WuDinkelbachKerneretal.2022, author = {Wu, Zhu and Dinkelbach, Fabian and Kerner, Florian and Friedrich, Alexandra and Ji, Lei and Stepanenko, Vladimir and W{\"u}rthner, Frank and Marian, Christel M. and Marder, Todd B.}, title = {Aggregation-Induced Dual Phosphorescence from (o-Bromophenyl)-Bis(2,6-Dimethylphenyl)Borane at Room Temperature}, series = {Chemistry—A European Journal}, volume = {28}, journal = {Chemistry—A European Journal}, number = {30}, doi = {10.1002/chem.202200525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318297}, year = {2022}, abstract = {Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o-BrTAB, the short lifetime component is ascribed to the T\(^M_1\) state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T\(^A_1\) state of an aggregate, with multiple intermolecular interactions existing in crystalline o-BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently.}, language = {en} } @article{KimLiessStolteetal.2021, author = {Kim, Jin Hong and Liess, Andreas and Stolte, Matthias and Krause, Ana-Maria and Stepanenko, Vladimir and Zhong, Chuwei and Bialas, David and Spano, Frank and W{\"u}rthner, Frank}, title = {An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye}, series = {Advanced Materials}, volume = {33}, journal = {Advanced Materials}, number = {26}, doi = {10.1002/adma.202100582}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256374}, year = {2021}, abstract = {A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC\(_{61}\)BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3\% and a full-width at half-maximum of only 85 nm (815 cm\(^{-1}\)) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications.}, language = {en} } @article{WehnerRoehrStepanenkoetal.2020, author = {Wehner, Marius and R{\"o}hr, Merle Insa Silja and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Control of self-assembly pathways toward conglomerate and racemic supramolecular polymers}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-19189-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230580}, year = {2020}, abstract = {Homo- and heterochiral aggregation during crystallization of organic molecules has significance both for fundamental questions related to the origin of life as well as for the separation of homochiral compounds from their racemates in industrial processes. Herein, we analyse these phenomena at the lowest level of hierarchy - that is the self-assembly of a racemic mixture of (R,R)- and (S,S)-PBI into 1D supramolecular polymers. By a combination of UV/vis and NMR spectroscopy as well as atomic force microscopy, we demonstrate that homochiral aggregation of the racemic mixture leads to the formation of two types of supramolecular conglomerates under kinetic control, while under thermodynamic control heterochiral aggregation is preferred, affording a racemic supramolecular polymer. FT-IR spectroscopy and quantum-chemical calculations reveal unique packing arrangements and hydrogen-bonding patterns within these supramolecular polymers. Time-, concentration- and temperature-dependent UV/vis experiments provide further insights into the kinetic and thermodynamic control of the conglomerate and racemic supramolecular polymer formation. Homo- and heterochiral aggregation is a process of interest to prebiotic and chiral separation chemistry. Here, the authors analyze the self-assembly of a racemic mixture into 1D supramolecular polymers and find homochiral aggregation into conglomerates under kinetic control, while under thermodynamic control a racemic polymer is formed.}, language = {en} } @article{SchindlerGil‐SepulcreLindneretal.2020, author = {Schindler, Dorothee and Gil-Sepulcre, Marcos and Lindner, Joachim O. and Stepanenko, Vladimir and Moonshiram, Dooshaye and Llobet, Antoni and W{\"u}rthner, Frank}, title = {Efficient Electrochemical Water Oxidation by a Trinuclear Ru(bda) Macrocycle Immobilized on Multi-Walled Carbon Nanotube Electrodes}, series = {Advanced Energy Materials}, volume = {10}, journal = {Advanced Energy Materials}, number = {43}, doi = {10.1002/aenm.202002329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218381}, year = {2020}, abstract = {Catalytic water splitting is a viable process for the generation of renewable fuels. Here it is reported for the first time that a trinuclear supramolecular Ru(bda) (bda: 2,2′-bipyridine-6,6′-dicarboxylate) catalyst, anchored on multi-walled carbon nanotubes and subsequently immobilized on glassy carbon electrodes, shows outstanding performance in heterogeneous water oxidation. Activation of the catalyst on anodes by repetitive cyclic voltammetry (CV) scans results in a catalytic current density of 186 mA cm\(^{-2}\) at a potential of 1.45 V versus NHE. The activated catalyst performs water oxidation at an onset overpotential of 330 mV. The remarkably high stability of the hybrid anode is demonstrated by X-ray absorption spectroscopy and electrochemically, revealing the absence of any degradation after 1.8 million turnovers. Foot of the wave analysis of CV data of activated electrodes with different concentrations of catalyst indicates a monomolecular water nucleophilic attack mechanism with an apparent rate constant of TOFmax (turnover frequency) of 3200 s\(^{-1}\).}, language = {en} } @article{GrandeSoberatsHerbstetal.2018, author = {Grande, Vincenzo and Soberats, Bartolome and Herbst, Stefanie and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Hydrogen-bonded perylene bisimide J-aggregate aqua material}, volume = {9}, issn = {2041-6539}, doi = {10.1039/C8SC02409J}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204715}, pages = {6904-6911}, year = {2018}, abstract = {A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60-95 wt\% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30-50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water.}, language = {en} } @article{SanchezNayaStepanenkoMandeletal.2021, author = {Sanchez-Naya, Roberto and Stepanenko, Vladimir and Mandel, Karl and Beuerle, Florian}, title = {Modulation of Crystallinity and Optical Properties in Composite Materials Combining Iron Oxide Nanoparticles and Dye-Containing Covalent Organic Frameworks}, series = {Organic Materials}, volume = {3}, journal = {Organic Materials}, doi = {10.1055/s-0040-1722655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231480}, pages = {17-24}, year = {2021}, abstract = {Two series of organic-inorganic composite materials were synthesized through solvothermal imine condensation between diketopyrrolopyrrole dialdehyde DPP-1 and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) in the presence of varying amounts of either amino- or carboxy-functionalized superparamagnetic iron oxide nanoparticles (FeO). Whereas high FeO loading induced cross-linking of the inorganic nanoparticles by amorphous imine polymers, a lower FeO content resulted in the formation of crystalline covalent organic framework domains. All hybrid materials were analyzed by magnetization measurements, powder X-ray diffraction, electron microscopy, IR, and UV/Vis absorption spectroscopy. Crystallinity, chromophore stacking, and visible absorption features are directly correlated to the mass fraction of the components, thus allowing for a fine-tuning of materials properties.}, language = {en} } @article{GoerlSoberatsHerbstetal.2016, author = {G{\"o}rl, Daniel and Soberats, Bartolome and Herbst, Stefanie and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Perylene bisimide hydrogels and lyotropic liquid crystals with temperature-responsive color change}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {11}, doi = {10.1039/c6sc02249a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162459}, pages = {6786-6790}, year = {2016}, abstract = {The self-assembly of perylene bisimide (PBI) dyes bearing oligo ethylene glycol (OEG) units in water affords responsive functional nanostructures characterized by their lower critical solution temperature (LCST). Tuning of the LCST is realized by a supramolecular approach that relies on two structurally closely related PBI-OEG molecules. The two PBIs socially co-assemble in water and the resulting nanostructures exhibit a single LCST in between the transition temperatures of the aggregates formed by single components. This permits to precisely tune the transition from a hydrogel to a lyotropic liquid crystal state at temperatures between 26 and 51 °C by adjusting the molar fraction of the two PBIs. Owing to concomitant changes in PBI-PBI interactions this phase transition affords a pronounced color change with "fluorescence-on" response that can be utilized as a smart temperature sensory system.}, language = {en} } @article{ShenBialasHechtetal.2021, author = {Shen, Chia-An and Bialas, David and Hecht, Markus and Stepanenko, Vladimir and Sugiyasu, Kazunori and W{\"u}rthner, Frank}, title = {Polymorphism in squaraine dye aggregates by self-assembly pathway differentiation: panchromatic tubular dye nanorods versus J-aggregate nanosheets}, series = {Angewandte Chemie International Edition}, journal = {Angewandte Chemie International Edition}, number = {21}, edition = {60}, doi = {10.1002/anie.202102183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256443}, pages = {11949-11958}, year = {2021}, abstract = {A bis(squaraine) dye equipped with alkyl and oligoethyleneglycol chains was synthesized by connecting two dicyanomethylene substituted squaraine dyes with a phenylene spacer unit. The aggregation behavior of this bis(squaraine) was investigated in non-polar toluene/tetrachloroethane (98:2) solvent mixture, which revealed competing cooperative self-assembly pathways into two supramolecular polymorphs with entirely different packing structures and UV/Vis/NIR absorption properties. The self-assembly pathway can be controlled by the cooling rate from a heated solution of the monomers. For both polymorphs, quasi-equilibrium conditions between monomers and the respective aggregates can be established to derive thermodynamic parameters and insights into the self-assembly mechanisms. AFM measurements revealed a nanosheet structure with a height of 2 nm for the thermodynamically more stable polymorph and a tubular nanorod structure with a helical pitch of 13 nm and a diameter of 5 nm for the kinetically favored polymorph. Together with wide angle X-ray scattering measurements, packing models were derived: the thermodynamic polymorph consists of brick-work type nanosheets that exhibit red-shifted absorption bands as typical for J-aggregates, while the nanorod polymorph consists of eight supramolecular polymer strands of the bis(squaraine) intertwined to form a chimney-type tubular structure. The absorption of this aggregate covers a large spectral range from 550 to 875 nm, which cannot be rationalized by the conventional exciton theory. By applying the Essential States Model and considering intermolecular charge transfer, the aggregate spectrum was adequately reproduced, revealing that the broad absorption spectrum is due to pronounced donor-acceptor overlap within the bis(squaraine) nanorods. The latter is also responsible for the pronounced bathochromic shift observed for the nanosheet structure as a result of the slip-stacked arranged squaraine chromophores.}, language = {en} } @article{SchmidtStolteSuessetal.2019, author = {Schmidt, David and Stolte, Matthias and S{\"u}ß, Jasmin and Liess, Dr. Andreas and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Protein-like enwrapped perylene bisimide chromophore as bright microcrystalline emitter material}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {38}, doi = {10.1002/ange.201907618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204809}, pages = {13385-13389}, year = {2019}, abstract = {Strongly emissive solid-state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer-like absorption and emission profiles as well as fluorescence quantum yields over 90 \% in its crystalline solid state. The material was synthesized by attaching two bulky tris(4-tert-butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments.}, language = {en} }