@article{DmochewitzFoertschZwergeretal.2013, author = {Dmochewitz, Lydia and F{\"o}rtsch, Christina and Zwerger, Christian and Vaeth, Martin and Felder, Edward and Huber-Lang, Markus and Barth, Holger}, title = {A Recombinant Fusion Toxin Based on Enzymatic Inactive C3bot1 Selectively Targets Macrophages}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0054517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131189}, pages = {e54517}, year = {2013}, abstract = {Background: The C3bot1 protein (~23 kDa) from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. Methodology/Principal Findings: Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (~50 kDa) from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. Conclusions/Significance: In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.}, language = {en} } @article{MuellerQuandtMarienfeldetal.2013, author = {Mueller, Kerstin and Quandt, Jasmin and Marienfeld, Ralf B. and Weihrich, Petra and Fiedler, Katja and Claussnitzer, Melina and Laumen, Helmut and Vaeth, Martin and Berberich-Siebelt, Frederike and Serfling, Edgar and Wirth, Thomas and Brunner, Cornelia}, title = {Octamer-dependent transcription in T cells is mediated by NFAT and \(NF-\kappa B\)}, series = {Nucleic Acids Research}, volume = {41}, journal = {Nucleic Acids Research}, number = {4}, issn = {1362-4962}, doi = {10.1093/nar/gks1349}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123280}, pages = {2138-2154}, year = {2013}, abstract = {The transcriptional co-activator BOB.1/OBF.1 was originally identified in B cells and is constitutively expressed throughout B cell development. BOB.1/OBF.1 associates with the transcription factors Oct1 and Oct2, thereby enhancing octamer-dependent transcription. In contrast, in T cells, BOB.1/OBF.1 expression is inducible by treatment of cells with PMA/Ionomycin or by antigen receptor engagement, indicating a marked difference in the regulation of BOB.1/OBF.1 expression in B versus T cells. The molecular mechanisms underlying the differential expression of BOB.1/OBF.1 in T and B cells remain largely unknown. Therefore, the present study focuses on mechanisms controlling the transcriptional regulation of BOB.1/OBF.1 and Oct2 in T cells. We show that both calcineurin- and \(NF-\kappa B\)-inhibitors efficiently attenuate the expression of BOB.1/OBF.1 and Oct2 in T cells. In silico analyses of the BOB.1/OBF.1 promoter revealed the presence of previously unappreciated combined NFAT/\(NF-\kappa B\) sites. An array of genetic and biochemical analyses illustrates the involvement of the \(Ca^{2+}\)/calmodulin-dependent phosphatase calcineurin as well as NFAT and \(NF-\kappa B\) transcription factors in the transcriptional regulation of octamer-dependent transcription in T cells. Conclusively, impaired expression of BOB.1/OBF.1 and Oct2 and therefore a hampered octamer-dependent transcription may participate in T cell-mediated immunodeficiency caused by the deletion of NFAT or \(NF-\kappa B\) transcription factors.}, language = {en} }