@article{KarabegGrauthoffKollertetal.2013, author = {Karabeg, Margherita M. and Grauthoff, Sandra and Kollert, Sina Y. and Weidner, Magdalena and Heiming, Rebecca S. and Jansen, Friederike and Popp, Sandy and Kaiser, Sylvia and Lesch, Klaus-Peter and Sachser, Norbert and Schmitt, Angelika G. and Lewejohann, Lars}, title = {5-HTT Deficiency Affects Neuroplasticity and Increases Stress Sensitivity Resulting in Altered Spatial Learning Performance in the Morris Water Maze but Not in the Barnes Maze}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0078238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129978}, pages = {e78238}, year = {2013}, abstract = {The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in na{\"i}ve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.}, language = {en} } @article{PfeifferGoetzXiangetal.2013, author = {Pfeiffer, Verena and G{\"o}tz, Rudolf and Xiang, Chaomei and Camarero, Guadelupe and Braun, Attila and Zhang, Yina and Blum, Robert and Heinsen, Helmut and Nieswandt, Bernhard and Rapp, Ulf R.}, title = {Ablation of BRaf Impairs Neuronal Differentiation in the Postnatal Hippocampus and Cerebellum}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130304}, pages = {e58259}, year = {2013}, abstract = {This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.}, language = {en} } @article{ManchiaAdliAkulaetal.2013, author = {Manchia, Mirko and Adli, Mazda and Akula, Nirmala and Arda, Raffaella and Aubry, Jean-Michel and Backlund, Lena and Banzato, Claudio E. M. and Baune, Bernhard T. and Bellivier, Frank and Bengesser, Susanne and Biernacka, Joanna M. and Brichant-Petitjean, Clara and Bui, Elise and Calkin, Cynthia V. and Cheng, Andrew Tai Ann and Chillotti, Caterina and Cichon, Sven and Clark, Scott and Czerski, Piotr M. and Dantas, Clarissa and Del Zompo, Maria and DePaulo, J. Raymond and Detera-Wadleigh, Sevilla D. and Etain, Bruno and Falkai, Peter and Fris{\´e}n, Louise and Frye, Mark A. and Fullerton, Jan and Gard, S{\´e}bastien and Garnham, Julie and Goes, Fernando S. and Grof, Paul and Gruber, Oliver and Hashimoto, Ryota and Hauser, Joanna and Heilbronner, Urs and Hoban, Rebecca and Hou, Liping and Jamain, St{\´e}phane and Kahn, Jean-Pierre and Kassem, Layla and Kato, Tadafumi and Kelsoe, John R. and Kittel-Schneider, Sarah and Kliwicki, Sebastian and Kuo, Po-Hsiu and Kusumi, Ichiro and Laje, Gonzalo and Lavebratt, Catharina and Leboyer, Marion and Leckband, Susan G. and L{\´o}pez Jaramillo, Carlos A. and Maj, Mario and Malafosse, Alain and Martinsson, Lina and Masui, Takuya and Mitchell, Philip B. and Mondimore, Frank and Monteleone, Palmiero and Nallet, Audrey and Neuner, Maria and Nov{\´a}k, Tom{\´a}s and O'Donovan, Claire and {\"O}sby, Urban and Ozaki, Norio and Perlis, Roy H. and Pfennig, Andrea and Potash, James B. and Reich-Erkelenz, Daniela and Reif, Andreas and Reininghaus, Eva and Richardson, Sara and Rouleau, Guy A. and Rybakowski, Janusz K. and Schalling, Martin and Schofield, Peter R. and Schubert, Oliver K. and Schweizer, Barbara and Seem{\"u}ller, Florian and Grigoroiu-Serbanescu, Maria and Severino, Giovanni and Seymour, Lisa R. and Slaney, Claire and Smoller, Jordan W. and Squassina, Alessio and Stamm, Thomas and Steele, Jo and Stopkova, Pavla and Tighe, Sarah K. and Tortorella, Alfonso and Turecki, Gustavo and Wray, Naomi R. and Wright, Adam and Zandi, Peter P. and Zilles, David and Bauer, Michael and Rietschel, Marcella and McMahon, Francis J. and Schulze, Thomas G. and Alda, Martin}, title = {Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0065636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130938}, pages = {e65636}, year = {2013}, abstract = {Objective: The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the "Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder" scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. Materials and Methods: Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (\(\kappa\))] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. Results: Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (\(\kappa\) = 0.66 and \(\kappa\) = 0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (\(ICC_1 = 0.71\) and \(ICC_2 = 0.75\), respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). Conclusions: We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.}, language = {en} } @phdthesis{Asthana2013, author = {Asthana, Manish}, title = {Associative learning - Genetic modulation of extinction and reconsolidation and the effects of transcranial Direct Current Stimulation (tDCS)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-84158}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Scientific surveys provide sufficient evidence that anxiety disorders are one of the most common psy-chiatric disorders in the world. The lifetime prevalence rate of anxiety disorder is 28.8\% (Kessler, et al., 2005). The most widely studied anxiety disorders are as follows panic disorder (PD), post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), social phobia (or social anxiety disorder), specific phobias, and generalized anxiety disorder (GAD). (NIMH Article, 2009). Classical conditioning is the stable paradigm used from the last one century to understand the neurobi-ology of fear learning. Neurobiological mechanism of fear learning is well documented with the condi-tioning studies. In the therapy of anxiety disorders, exposure based therapies are known to be the most effective approaches. Flooding is a form of exposure therapy in which a participant is exposed to the fear situation and kept in that situation until their fear dissipates. The exposure therapy is based on the phenomena of extinction; this means that a conditioned response diminishes if the conditioned stimulus (CS) is repeatedly presented without an unconditioned stimulus (UCS). One problem with extinction as well as with exposure-based therapy is the problem of fear return (for e.g. renewal, spontaneous recov-ery and reinstatement) after successful extinction. Therefore, extinction does not delete the fear memory trace. It has been well documented that memory processes can be modulated or disrupted using several sci-entific paradigms such as behavioral (for e.g. exposure therapy), pharmacological (for e.g. drug manipu-lation), non-invasive stimulation (for e.g. non-invasive stimulation such as electroconvulsive shock (ECS), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), etc. However, modulation of memory processes after reactivation or via non-invasive stimulation is still not clear, which is the focus of the current study. In addition, study of genetic variant suggests that genetic differences play a vital role in the psychiatric disorder especially in fear learning. Hence, it is also one of the concerns of the current dissertation to investigate the interaction between gene and reconsolidation of memory. With respect to fear-conditioning, there are three findings in the current dissertation, which are as fol-lows: (i) In the first study we investigated that non-invasive weak electrical stimulation interferes with the consolidation process and disrupts the fear consolidation to attain stable form. This might offer an effective treatment in the pathological memories, for e.g. PTSD, PD, etc. (ii) In the second study we demonstrated whether a brief single presentation of the CS will inhibit the fear recovery. Like earlier studies we also found that reactivation followed by reconsolidation douses fear return. Attenuation of fear recovery was observed in the reminder group compared to the no-reminder group. (iii) Finally, in our third study we found a statistically significant role of brain derived neurotrophic factor (BDNF) polymorphism in reconsolidation. Results of the third study affirm the involvement of BDNF variants (Met vs. Val) in the modulation of conditioned fear memory after its reactivation. In summary, we were able to show in the current thesis modulation of associative learning and recon-solidation via transcranial direct current stimulation and genetic polymorphism.}, subject = {Konditionierung}, language = {en} } @article{AraragiMlinarBaccinietal.2013, author = {Araragi, Naozumi and Mlinar, Boris and Baccini, Gilda and Gutknecht, Lise and Lesch, Klaus-Peter and Corradetti, Renato}, title = {Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis}, series = {Frontiers in Neuropharmacology}, journal = {Frontiers in Neuropharmacology}, doi = {10.3389/fphar.2013.00097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97098}, year = {2013}, abstract = {Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.}, language = {en} } @article{PauliGlotzbachSchoonAndreattaetal.2013, author = {Pauli, Paul and Glotzbach-Schoon, Evelyn and Andreatta, Marta and Reif, Andreas and Ewald, Heike and Tr{\"o}ger, Christian and Baumann, Christian and Deckert, J{\"u}rgen and M{\"u}hlberger, Andreas}, title = {Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle}, series = {Frontiers in Behavioral Neuroscience}, journal = {Frontiers in Behavioral Neuroscience}, doi = {10.3389/fnbeh.2013.00031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96516}, year = {2013}, abstract = {The serotonin (5-HT) and neuropeptide S (NPS) systems are discussed as important genetic modulators of fear and sustained anxiety contributing to the etiology of anxiety disorders. Sustained anxiety is a crucial characteristic of most anxiety disorders which likely develops through contextual fear conditioning. This study investigated if and how genetic alterations of the 5-HT and the NPS systems as well as their interaction modulate contextual fear conditioning; specifically, function polymorphic variants in the genes coding for the 5-HT transporter (5HTT) and the NPS receptor (NPSR1) were studied. A large group of healthy volunteers was therefore stratified for 5HTTLPR (S+ vs. LL carriers) and NPSR1 rs324981 (T+ vs. AA carriers) polymorphisms resulting in four genotype groups (S+/T+, S+/AA, LL/T+, LL/AA) of 20 participants each. All participants underwent contextual fear conditioning and extinction using a virtual reality (VR) paradigm. During acquisition, one virtual office room (anxiety context, CXT+) was paired with an unpredictable electric stimulus (unconditioned stimulus, US), whereas another virtual office room was not paired with any US (safety context, CXT-). During extinction no US was administered. Anxiety responses were quantified by fear-potentiated startle and ratings. Most importantly, we found a gene × gene interaction on fear-potentiated startle. Only carriers of both risk alleles (S+/T+) exhibited higher startle responses in CXT+ compared to CXT-. In contrast, anxiety ratings were only influenced by the NPSR1 polymorphism with AA carriers showing higher anxiety ratings in CXT+ as compared to CXT-. Our results speak in favor of a two level account of fear conditioning with diverging effects on implicit vs. explicit fear responses. Enhanced contextual fear conditioning as reflected in potentiated startle responses may be an endophenotype for anxiety disorders.}, language = {en} } @article{VernerHerrmannTrocheetal.2013, author = {Verner, Martin and Herrmann, Martin J. and Troche, Stefan J. and Roebers, Claudia M. and Rammsayer, Thomas H.}, title = {Cortical oxygen consumption in mental arithmetic as a function of task difficulty: a near-infrared spectroscopy approach}, series = {Frontiers in Human Neuroscience}, volume = {7}, journal = {Frontiers in Human Neuroscience}, number = {217}, issn = {1662-5161}, doi = {10.3389/fnhum.2013.00217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122449}, year = {2013}, abstract = {The present study investigated changes in cortical oxygenation during mental arithmetic using near-infrared spectroscopy (NIRS). Twenty-nine male volunteers were examined using a 52-channel continuous wave system for analyzing activity in prefrontal areas. With the help of a probabilistic mapping method, three regions of interest (ROIs) on each hemisphere were defined: The inferior frontal gyri (IFG), the middle frontal gyri (MFG), and the superior frontal gyri (SFG). Oxygenation as an indicator of functional brain activation was compared over the three ROI and two levels of arithmetic task difficulty (simple and complex additions). In contrast to most previous studies using fMRI or NIRS, in the present study arithmetic tasks were presented verbally in analogue to many daily life situations. With respect to task difficulty, more complex addition tasks led to higher oxygenation in all defined ROI except in the left IFG compared to simple addition tasks. When compared to the channel positions covering different gyri of the temporal lobe, the observed sensitivity to task complexity was found to be restricted to the specified ROIs. As to the comparison of ROIs, the highest oxygenation was found in the IFG, while MFG and SFG showed significantly less activation compared to IFG. The present cognitive-neuroscience approach demonstrated that NIRS is a suitable and highly feasible research tool for investigating and quantifying neural effects of increasing arithmetic task difficulty.}, language = {en} } @article{HarrisMaxwellO'Connoretal.2013, author = {Harris, Fiona M. and Maxwell, Margaret and O'Connor, Rory C. and Coyne, James and Arensman, Ella and Andr{\´a}s, Sz{\´e}kely and Gusm{\~a}o, Ricardo and Coffey, Claire and Costa, Susana and Zoltan, Cserh{\´a}ti and Koburger, Nicole and van Audenhove, Chantal and McDaid, David and Maloney, Julia and V{\"a}rnik, Peeter and Hegerl, Ulrich}, title = {Developing social capital in implementing a complex intervention: a process evaluation of the early implementation of a suicide prevention intervention in four European countries}, series = {BMC Public Health}, volume = {13}, journal = {BMC Public Health}, number = {158}, doi = {10.1186/1471-2458-13-158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122117}, year = {2013}, abstract = {Background: Variation in the implementation of complex multilevel interventions can impact on their delivery and outcomes. Few suicide prevention interventions, especially multilevel interventions, have included evaluation of both the process of implementation as well as outcomes. Such evaluation is essential for the replication of interventions, for interpreting and understanding outcomes, and for improving implementation science. This paper reports on a process evaluation of the early implementation stage of an optimised suicide prevention programme (OSPI-Europe) implemented in four European countries. Methods: The process analysis was conducted within the framework of a realist evaluation methodology, and involved case studies of the process of implementation in four European countries. Datasets include: repeated questionnaires to track progress of implementation including delivery of individual activities and their intensity; serial interviews and focus groups with stakeholder groups; and detailed observations at OSPI implementation team meetings. Results: Analysis of local contexts in each of the four countries revealed that the advisory group was a key mechanism that had a substantial impact on the ease of implementation of OSPI interventions, particularly on their ability to recruit to training interventions. However, simply recruiting representatives of key organisations into an advisory group is not sufficient to achieve impact on the delivery of interventions. In order to maximise the potential of high level 'gatekeepers', it is necessary to first transform them into OSPI stakeholders. Motivations for OSPI participation as a stakeholder included: personal affinity with the shared goals and target groups within OSPI; the complementary and participatory nature of OSPI that adds value to pre-existing suicide prevention initiatives; and reciprocal reward for participants through access to the extended network capacity that organisations could accrue for themselves and their organisations from participation in OSPI. Conclusions: Exploring the role of advisory groups and the meaning of participation for these participants revealed some key areas for best practice in implementation: careful planning of the composition of the advisory group to access target groups; the importance of establishing common goals; the importance of acknowledging and complementing existing experience and activity; and facilitating an equivalence of benefit from network participation.}, language = {en} } @article{HohoffGorjiKaiseretal.2013, author = {Hohoff, Christa and Gorji, Ali and Kaiser, Sylvia and Willscher, Edith and Korsching, Eberhard and Ambr{\´e}e, Oliver and Arolt, Volker and Lesch, Klaus-Peter and Sachser, Norbert and Deckert, J{\"u}rgen and Lewejohann, Lars}, title = {Effect of Acute Stressor and Serotonin Transporter Genotype on Amygdala First Wave Transcriptome in Mice}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131040}, pages = {e58880}, year = {2013}, abstract = {The most prominent brain region evaluating the significance of external stimuli immediately after their onset is the amygdala. Stimuli evaluated as being stressful actuate a number of physiological processes as an immediate stress response. Variation in the serotonin transporter gene has been associated with increased anxiety- and depression-like behavior, altered stress reactivity and adaptation, and pathophysiology of stress-related disorders. In this study the instant reactions to an acute stressor were measured in a serotonin transporter knockout mouse model. Mice lacking the serotonin transporter were verified to be more anxious than their wild-type conspecifics. Genome-wide gene expression changes in the amygdala were measured after the mice were subjected to control condition or to an acute stressor of one minute exposure to water. The dissection of amygdalae and stabilization of RNA was conducted within nine minutes after the onset of the stressor. This extremely short protocol allowed for analysis of first wave primary response genes, typically induced within five to ten minutes of stimulation, and was performed using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays. RNA profiling revealed a largely new set of differentially expressed primary response genes between the conditions acute stress and control that differed distinctly between wild-type and knockout mice. Consequently, functional categorization and pathway analysis indicated genes related to neuroplasticity and adaptation in wild-types whereas knockouts were characterized by impaired plasticity and genes more related to chronic stress and pathophysiology. Our study therefore disclosed different coping styles dependent on serotonin transporter genotype even directly after the onset of stress and accentuates the role of the serotonergic system in processing stressors and threat in the amygdala. Moreover, several of the first wave primary response genes that we found might provide promising targets for future therapeutic interventions of stress-related disorders also in humans.}, language = {en} } @article{ManishNueckelMuehlbergeretal.2013, author = {Manish, Asthana and Nueckel, Katharina and M{\"u}hlberger, Andreas and Neueder, Dorothea and Polak, Thomas and Domschke, Katharina and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Effects of transcranial direct current stimulation on consolidation of fear memory}, series = {Frontiers in Neuropsychiatric Imaging and Stimulation}, journal = {Frontiers in Neuropsychiatric Imaging and Stimulation}, doi = {10.3389/fpsyt.2013.00107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97294}, year = {2013}, abstract = {It has been shown that applying transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) influences declarative memory processes. This study investigates the efficacy of tDCS on emotional memory consolidation, especially experimental fear conditioning. We applied an auditory fear-conditioning paradigm, in which two differently colored squares (blue and yellow) were presented as conditioned stimuli (CS) and an auditory stimulus as unconditioned stimulus (UCS). Sixty-nine participants were randomly assigned into three groups: anodal, cathodal, and sham stimulation. The participants of the two active groups (i.e., anodal and cathodal) received tDCS over the left DLPFC for 12 min after fear conditioning. The effect of fear conditioning and consolidation (24 h later) was measured by assessing the skin conductance response (SCR) to the CS. The results provide evidence that cathodal stimulation of the left DLPFC leads to an inhibitory effect on fear memory consolidation compared to anodal and sham stimulation, as indicated by decreased SCRs to CS+ presentation during extinction training at day 2. In conclusion, current work suggests that cathodal stimulation interferes with processes of fear memory consolidation.}, language = {en} }