@phdthesis{Hartung2006, author = {Hartung, Anke}, title = {Localization of BMP receptors in distinct plasma membrane domains and its impact on BMP signaling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18360}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Endocytosis of growth factor receptors plays an important role in the activation and propagation as well as the attenuation of signaling pathways. Its malfunctioning can cause several pathologies, e.g. by controlling the level of receptors at the cell surface. BMPs are members of the TGF-ß superfamily and are involved in the regulation of proliferation, differentiation, chemotaxis and apoptosis. BMP signaling is initiated at two types of transmembrane serine/threonine kinases, BRI and BRII. BMP receptor activation occurs upon ligand binding to preformed complexes (PFCs) or BMP2-induced signaling complexes (BISCs) composed of BRI and BRII. Binding of BMP2 to PFCs results in activation of the Smad pathway, whereas BISCs initiate the activation of Smad-independent pathways via p38 resulting in the induction of Alkaline phosphatase (ALP). BMP receptor endocytosis has not been extensively studied and the potential role of localization to different regions of the plasma membrane in determining the signaling pathways activated by PFCs and BISCs was not explored so far. In the present work, the localization of BMP receptors in distinct membrane domains and the consequential impact on BMP signaling were investigated. By separating detergent-resistant membranes (DRMs) from cell lysates and subsequent gradient ultracentrifugation, it could be demonstrated that BRI and BRII cofractionate with cav-1, the marker protein of caveolae. Moreover, both receptor types interacted with cav-1 and showed a partially colocalization with cav-1 at the plasma membrane. Although these results point to a caveolar localization, BMP receptors cofractionated also with DRMs in cells exhibiting no caveolae, suggesting an additional non-caveolar raft localization. Beyond that, BRII could also be localized to clathrin-coated pits (CCPs) by means of immuno-electronmicroscopy studies. The second part of this thesis demonstrated that both membrane regions influence BMP signaling in distinct ways. Smad1/5 was shown to be phosphorylated independently of endocytic events at the cell surface. On the one hand, disruption of DRM regions by cholesterol depletion inhibited specifically BMP2-mediated ALP production, while Smad signaling was unaffected. On the other hand, inhibition of clathrin-mediated endocytosis by specific inhibitors affected BMP2-induced Smad signaling as well as the induction of ALP, suggesting that both Smad-dependent and Smad-independent signaling pathways are required for BMP2 induced ALP production. These findings propose an important regulatory impact of different endocytic routes and membrane regions on BMP signaling as well as that a distinct membrane localization of BMP receptors account for specific signaling properties initiated at PFCs or BISCs.}, subject = {Knochen-Morphogenese-Proteine}, language = {en} } @phdthesis{Harth2010, author = {Harth, Stefan}, title = {Molecular Recognition in BMP Ligand-Receptor Interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Bone Morphogenetic Proteins (BMPs) are secreted multifunctional signaling proteins that play an important role during development, maintenance and regeneration of tissues and organs in almost all vertebrates and invertebrates. BMPs transmit their signals by binding to two types of serine-/threonine-kinase receptors. BMPs bind first to their high affinity receptor, thereby recruiting their low affinity receptor into the complex. This receptor assembly starts a Smad (Small mothers against decapentaplegic) protein signaling cascade which regulates the transcription of responsive genes. Up to date, only seven type I and five type II receptors are known for more than 30 ligands. Therefore, many BMP ligands can recruit more than one receptor subtype. Vice versa, receptors can bind to several ligands, indicating a highly promiscuous ligand-receptor interaction. This raises the following questions: (i) How are BMPs able to induce ligand-specific signals, despite forming complexes with identical receptor composition and (ii) how are they able to recognize and bind various binding partners in a highly specific manner. From the ligand's point of view, heterodimeric BMPs are valuable tools for studying the interplay between different sets of receptors, thereby providing new insights into how the various BMP signals can be generated. This study describes the expression and purification of the heterodimers BMP-2/6 and -2/7 from E.coli cells. BIAcore interaction studies and various in vitro cell activity assays revealed that the generated heterodimers are biologically active. Furthermore, BMP-2/6 and -2/7 exhibit a higher biological activity in most of the cell assays compared to their homodimeric counterparts. In addition, the BMP type I receptor BMPR-IA is involved in heterodimeric BMP signaling. However, the usage of other type I receptor subtypes (e.g. ActR-I) building a heteromeric ligand-receptor type I complex as indicated in previous works could not be determined conclusively. Furthermore, BMP heterodimers seem to require only one type I receptor for signaling. From the receptors' point of view, the BMP type I receptor BMPR-IA is a prime example for its promiscuous binding to different BMP ligands. The extracellular binding interface of BMPR-IA is mainly unfolded in its unbound form, requiring a large induced fit to adopt the conformation when bound to its ligand BMP-2. In order to unravel whether the binding promiscuity of BMPR-IA is linked to structural plasticity of its binding interface, the interaction of BMPR-IA bound to an antibody Fab fragment was investigated. The Fab fragment was selected because of its ability to recognize the BMP-2 binding epitope on BMPR-IA, thus neutralizing the BMP-2 mediated receptor activation. This study describes the crystal structure of the complex of the extracellular domain of BMPR-IA bound to the antibody Fab fragment AbyD1556. The crystal structure revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface of BMPR-IA for BMP-2 interaction. Although the contact epitopes of BMPR-IA to both binding partners coincide, the three-dimensional structures of BMPR-IA in both complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to both the antibody and BMP-2 are almost identical. Comparing the structures of BMPR-IA bound to BMP-2 or to the Fab AbyD1556 with the structure of unbound BMPR-IA revealed that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability.}, subject = {Knochen-Morphogenese-Proteine}, language = {en} } @phdthesis{Noskov2003, author = {Noskov, Andrey}, title = {Structural and functional studies of the Interleukin-5 receptor system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8195}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {The aim of current work was contribution to the long-term ongoing project on developing human IL-5 agonists/antagonists that intervene with or inhibit IL-5 numerous functions in cell culture and/or in animal disease models. To facilitate design of an IL-5 antagonist variant or low-molecular weight mimetics only capable of binding to the specific receptor alpha chain, but would lack the ability to attract the receptor common \&\#946;-chain and thus initiate receptor complex activation it is necessary to gain the information on minimal structural and functional epitopes. Such a strategy was successfully adopted in our group on example of Interleukin 4. To precisely localize minimal structural epitope it is essential to have structure of the ligand in its bound form and especially informative would be structure of complex of the ligand and its specific receptor alpha chain. For this purpose large quantities (tens of milligrams), retaining full biological activity IL-5 and extracellular domain of IL-5 specific receptor \&\#945;-chain were expressed in a bacterial expression system (E.coli). After successful refolding proteins were purified to 95-99\% Stable and soluble receptor:ligand complex was prepared. Each established purification and refolding procedures were subjected to optimization targeting maximal yields and purity. Produced receptor:ligand complex was applied to crystallization experiments. Microcrystals were initially obtained with a flexible sparse matrix screening methodology. Crystal quality was subsequently improved by fine-tuning of the crystallization conditions. At this stage crystals of about 800x150x30µm in size can be obtained. They possess desirable visible characteristics of crystals including optical clarity, smooth facecs and sharp edges. Crystals rotate plane polarized light reflecting their well internal organization. Unfortunately relative slimness and sometimes cluster nature of the produced crystals complicates acquisition of high-resolution dataset and resolution of the structure. With some of obtained crystals diffraction to a resolution up to 4{\AA} was observed.}, subject = {Interleukin 5}, language = {en} }