@phdthesis{Rothe2015, author = {Rothe, Dietrich Gernot}, title = {Spin Transport in Topological Insulators and Geometrical Spin Control}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125628}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In the field of spintronics, spin manipulation and spin transport are the main principles that need to be implemented. The main focus of this thesis is to analyse semiconductor systems where high fidelity in these principles can be achieved. To this end, we use numerical methods for precise results, supplemented by simpler analytical models for interpretation. The material system of 2D topological insulators, HgTe/CdTe quantum wells, is interesting not only because it provides a topologically distinct phase of matter, physically manifested in its protected transport properties, but also since within this system, ballistic transport of high quality can be realized, with Rashba spin-orbit coupling and electron densities that are tunable by electrical gating. Extending the Bernvevig-Hughes-Zhang model for 2D topological insulators, we derive an effective four-band model including Rashba spin-orbit terms due to an applied potential that breaks the spatial inversion symmetry of the quantum well. Spin transport in this system shows interesting physics because the effects of Rashba spin-orbit terms and the intrinsic Dirac-like spin-orbit terms compete. We show that the resulting spin Hall signal can be dominated by the effect of Rashba spin-orbit coupling. Based on spin splitting due to the latter, we propose a beam splitter setup for all-electrical generation and detection of spin currents. Its working principle is similar to optical birefringence. In this setup, we analyse spin current and spin polarization signals of different spin vector components and show that large in-plane spin polarization of the current can be obtained. Since spin is not a conserved quantity of the model, we first analyse the transport of helicity, a conserved quantity even in presence of Rashba spin-orbit terms. The polarization defined in terms of helicity is related to in-plane polarization of the physical spin. Further, we analyse thermoelectric transport in a setup showing the spin Hall effect. Due to spin-orbit coupling, an applied temperature gradient generates a transverse spin current, i.e. a spin Nernst effect, which is related to the spin Hall effect by a Mott-like relation. In the metallic energy regimes, the signals are qualitatively explained by simple analytic models. In the insulating regime, we observe a spin Nernst signal that originates from the finite-size induced overlap of edge states. In the part on methods, we discuss two complementary methods for construction of effective semiconductor models, the envelope function theory and the method of invariants. Further, we present elements of transport theory, with some emphasis on spin-dependent signals. We show the connections of the adiabatic theorem of quantum mechanics to the semiclassical theory of electronic transport and to the characterization of topological phases. Further, as application of the adiabatic theorem to a control problem, we show that universal control of a single spin in a heavy-hole quantum dot is experimentally realizable without breaking time reversal invariance, but using a quadrupole field which is adiabatically changed as control knob. For experimental realization, we propose a GaAs/GaAlAs quantum well system.}, subject = {Elektronischer Transport}, language = {en} } @article{RottlaenderKuerten2015, author = {Rottlaender, Andrea and Kuerten, Stefanie}, title = {Stepchild or prodigy? Neuroprotection in multiple sclerosis (MS) research}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160714850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148416}, pages = {14850-14865}, year = {2015}, abstract = {Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) and characterized by the infiltration of immune cells, demyelination and axonal loss. Loss of axons and nerve fiber pathology are widely accepted as correlates of neurological disability. Hence, it is surprising that the development of neuroprotective therapies has been neglected for a long time. A reason for this could be the diversity of the underlying mechanisms, complex changes in nerve fiber pathology and the absence of biomarkers and tools to quantify neuroregenerative processes. Present therapeutic strategies are aimed at modulating or suppressing the immune response, but do not primarily attenuate axonal pathology. Yet, target-oriented neuroprotective strategies are essential for the treatment of MS, especially as severe damage of nerve fibers mostly occurs in the course of disease progression and cannot be impeded by immune modulatory drugs. This review shall depict the need for neuroprotective strategies and elucidate difficulties and opportunities.}, language = {en} } @article{ElMajdoubHunscheIgressaetal.2015, author = {El Majdoub, Faycal and Hunsche, Stefan and Igressa, Alhadi and Kocher, Martin and Sturm, Volker and Maarouf, Mohammad}, title = {Stereotactic LINAC-Radiosurgery for Glomus Jugulare Tumors: A Long-Term Follow-Up of 27 Patients}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0129057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151717}, pages = {e0129057}, year = {2015}, abstract = {Background The optimal treatment of glomus jugulare tumors (GJTs) remains controversial. Due to the critical location, microsurgery still provides high treatment-related morbidity and a decreased quality of life. Thus, we performed stereotactical radiosurgery (SRS) for the treatment of GJTs and evaluated the long-term outcome. Methods Between 1991 and 2011, 32 patients with GJTs underwent SRS using a linear accelerator (LINAC) either as primary or salvage therapy. Twenty-seven patients (median age 59.9 years, range 28.7-79.9 years) with a follow-up greater than five years (median 11 years, range 5.3-22.1 years) were selected for retrospective analysis. The median therapeutic single dose applied to the tumor surface was 15 Gy (range 11-20 Gy) and the median tumor volume was 9.5 ml (range 2.8-51 ml). Results Following LINAC-SRS, 10 of 27 patients showed a significant improvement of their previous neurological complaints, whereas 12 patients remained unchanged. Five patients died during follow-up due to old age or other, not treatment-related reasons. MR-imaging showed a partial remission in 12 and a stable disease in 15 patients. No tumor progression was observed. The actuarial overall survival rates after five, ten and 20 years were 100\%, 95.2\% and 79.4\%, respectively. Conclusions Stereotactic LINAC-Radiosurgery can achieve an excellent long-term tumor control beside a low rate of morbidity in the treatment of GJTs. It should be considered as an alternative therapy regime to surgical resection or fractionated external beam radiation either as primary, adjuvant or salvage therapy.}, language = {en} } @article{HoffmannEtzrodtWillkommetal.2015, author = {Hoffmann, Linda S. and Etzrodt, Jennifer and Willkomm, Lena and Sanyal, Abhishek and Scheja, Ludger and Fischer, Alexander W. C. and Stasch, Johannes-Peter and Bloch, Wilhelm and Friebe, Andreas and Heeren, Joerg and Pfeifer, Alexander}, title = {Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7235}, doi = {10.1038/ncomms8235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143127}, year = {2015}, abstract = {Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing \(\beta\)\(_{1}\)-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities.}, language = {en} } @article{ZinnerSperlichKruegeretal.2015, author = {Zinner, Christoph and Sperlich, Billy and Krueger, Malte and Focke, Tim and Reed, Jennifer and Mester, Joachim}, title = {Strength, Endurance, Throwing Velocity and in-Water Jump Performance of Elite German Water Polo Players}, series = {Journal of Human Kinetics}, volume = {45}, journal = {Journal of Human Kinetics}, doi = {10.1515/hukin-2015-0015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148812}, pages = {149-156}, year = {2015}, abstract = {The purpose of this study was threefold: 1) to assess the eggbeater kick and throwing performance using a number of water polo specific tests, 2) to explore the relation between the eggbeater kick and throwing performance, and 3) to investigate the relation between the eggbeater kick in the water and strength tests performed in a controlled laboratory setting in elite water polo players. Fifteen male water polo players of the German National Team completed dynamic and isometric strength tests for muscle groups (adductor, abductor, abdominal, pectoralis) frequently used during water polo. After these laboratory strength tests, six water polo specific in-water tests were conducted. The eggbeater kick assessed leg endurance and agility, maximal throwing velocity and jump height. A 400 m test and a sprint test examined aerobic and anaerobic performance. The strongest correlation was found between jump height and arm length (p < 0.001, r = 0.89). The laboratory diagnostics of important muscles showed positive correlations with the results of the in-water tests (p < 0.05, r = 0.52-0.70). Muscular strength of the adductor, abdominal and pectoralis muscles was positively related to in-water endurance agility as assessed by the eggbeater kick (p < 0.05; r = 0.53-0.66). Findings from the current study emphasize the need to assess indices of water polo performance both in and out of the water as well as the relation among these parameters to best assess the complex profile of water polo players.}, language = {en} } @article{LukasczikGerlichSchuleretal.2015, author = {Lukasczik, Matthias and Gerlich, Christian and Schuler, Michael and Neuderth, Silke and Dlugosch, Gabriele and Faller, Hermann}, title = {Stress and resources in women attending an inpatient prevention/rehabilitation measure for parents: Secondary analysis of quality assurance data}, series = {Open Journal of Medical Psychology}, volume = {4}, journal = {Open Journal of Medical Psychology}, doi = {10.4236/ojmp.2015.42003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125316}, pages = {23-34}, year = {2015}, abstract = {Questionnaire data from two projects on the development of quality assurance instruments for an inpatient rehabilitation/prevention program for parents were used for a secondary analysis. In this analysis, the associations of gains in a psychosocial resource (parenting self-efficacy) and two types of stressors experienced by mothers at the start of treatment (parenting hassles, depressive symptoms) with general life satisfaction and satisfaction with health at the end of treatment were explored. Structural equation modeling was applied to data from N = 1724 female patients. Potential resource-stressor interactions were tested using the Latent Moderated Structural Equations approach. Results showed that parenting hassles were negatively associated with general life satisfaction and satisfaction with health while self-efficacy gains were weakly positively correlated with both variables. No interaction of parenting hassles and self-efficacy gains was found. Depressive symptoms were negatively associated with both satisfaction measures. In these models, self-efficacy gains were not substantially correlated with life satisfaction, but showed a small association with satisfaction with health. There was no significant interaction of depressive symptoms and self-efficacy gains. The findings imply that interventions for distressed mothers—as exemplarily illustrated by this inpatient setting—should focus on identifying and reducing initial stressors as these may continue to impair mothers' subjective health despite gains in parenting-related resources.}, language = {en} } @article{SalvadorBurekFoerster2015, author = {Salvador, Ellaine and Burek, Malgorzata and F{\"o}rster, Carola Y.}, title = {Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade}, series = {Frontiers in Cellular Neuroscience}, volume = {9}, journal = {Frontiers in Cellular Neuroscience}, number = {323}, doi = {10.3389/fncel.2015.00323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148255}, year = {2015}, abstract = {The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1\(\alpha\) chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-\(\alpha\) also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glutl expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.}, language = {en} } @article{LaineAlbeckavandeLindeetal.2015, author = {Laine, Romain F. and Albecka, Anna and van de Linde, Sebastian and Rees, Eric J. and Crump, Colin M. and Kaminski, Clemens F.}, title = {Structural analysis of herpes simplex virus by optical super-resolution imaging}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {5980}, doi = {10.1038/ncomms6980}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144623}, year = {2015}, abstract = {Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.}, language = {en} } @phdthesis{Delto2015, author = {Delto, Carolyn Francesca}, title = {Structural and Biochemical Characterization of the GABA(A) Receptor Interacting Protein Muskelin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In a study from 2011, the protein muskelin was described as a central coordinator of the retrograde transport of GABA(A) receptors in neurons. As muskelin governs the transport along actin filaments as well as microtubules, it might be the first representative of a novel class of regulators, which coordinate cargo transport across the borders of these two independent systems of transport paths and their associated motorproteins. To establish a basis for understanding the mode of operation of muskelin, the aim of this thesis was an in-depth biochemical and structural characterization of muskelin and its interaction with the GABA(A) receptor. One focus of the work was the analysis of the oligomerization of muskelin. As could be demonstrated, the oligomerization is based on two independent interactions mediated by different domains of the protein: a known interaction of the N-terminal discoidin domain with the C-terminal portion, termed head-to-tail interaction, and a dimerization of the LisH motif in muskelin that was so far neglected in the literature. For the detailed studies of both binding events, the solution of a crystal structure of a fragment of muskelin, comprising the Discoidin domain and the LisH motif, was an important basis. The fragment crystallized as a dimer, with dimerization being mediated solely by the LisH motif. Biochemical analysis corroborated that the LisH motif in muskelin serves as a dimerization element, and, moreover, showed that the C-terminal domain of the protein substantially stabilizes this dimerization. In addition, the crystal structure revealed the molecular composition of the surface of the head in the head-to-tail interaction, namely the discoidin domain. This information enabled to map the amino acids contributing to binding, which showed that the binding site of the head-to-tail interaction coincides with the generic ligand binding site of the discoidin domain. As part of the analyses, residues that are critical for LisH-dimerization and the head-to-tail binding, respectively, were identified, whose mutation specifically interfered with each of the interactions separately. These mutations allowed to investigate the interplay of these interactions during oligomerization. It could be shown that recombinant muskelin assembles into a tetramer to which both interactions, the LisH-dimerization and the head-to-tail binding, contribute independently. When one of the two interactions was disturbed, only a dimer mediated via the respective other interaction could be formed; when both interactions were disturbed, the protein was present as monomer. Furthermore, Frank Heisler in the group of Matthias Kneussel was able to show the drastic impact of an impaired LisH-dimerization on muskelin in cells using these mutations. Disturbing the LisH-dimerization led to a complete redistribution of the originally cytoplasmic muskelin to the nucleus which was accompanied by a severe impairment of its function during GABA(A) receptor transport. Following up on these results in an analysis of muskelin variants, for which alterations of the subcellular localization had been published earlier, the crucial influence of LisH-dimerization to the subcellular localization and thereby the role of muskelin in the cell was confirmed. The biochemical studies of the interaction of muskelin and the alpha1 subunit of the GABA(A) receptor demonstrated a direct binding with an affinity in the low micromolar range, which is mediated primarily by the kelch repeat domain in muskelin. For the binding site on the GABA(A) receptor, it was confirmed that the thirteen most C-terminal residues of the intracellular domain are critical for the binding of muskelin. In accordance with the strong conservation of these residues among the alpha subunits of the GABA(A) receptor, it could be shown that an interaction with muskelin in vitro is also possible for the alpha2 and alpha5 subunits. Based on the comparison of the binding sites between the homologous subunits, tentative conclusions can be drawn about the details of the binding, which may serve as a starting point for follow-up studies. This thesis thereby makes valuable contributions to the understanding of muskelin, in particular the significance of its oligomerization. It furthermore provides an experimental framework for future studies that address related topics, such as the characterization of other muskelin interaction partners, or the questions raised in this work.}, subject = {Oligomerisation}, language = {en} } @article{LeeSongHanetal.2015, author = {Lee, Eun-Hye and Song, Jin-Dong and Han, Il-Ki and Chang, Soo-Kyung and Langer, Fabian and H{\"o}fling, Sven and Forchel, Alfred and Kamp, Martin and Kim, Jong-Su}, title = {Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling}, series = {Nanoscale Research Letters}, volume = {10}, journal = {Nanoscale Research Letters}, number = {114}, doi = {10.1186/s11671-015-0826-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143692}, year = {2015}, abstract = {The position of a single GaAs quantum dot (QD), which is optically active, grown by low-density droplet epitaxy (DE) (approximately 4 QDs/μm\(^{2}\)), was directly observed on the surface of a 45-nm-thick Al\(_{0.3}\)Ga\(_{0.7}\)As capping layer. The thin thickness of AlGaAs capping layer is useful for single photon sources with plasmonic optical coupling. A micro-photoluminescence for GaAs DE QDs has shown exciton/biexciton behavior in the range of 1.654 to 1.657 eV. The direct observation of positions of low-density GaAs DE QDs would be advantageous for mass fabrication of devices that use a single QD, such as single photon sources.}, language = {en} }