@phdthesis{Kropf2018, author = {Kropf, Jan}, title = {The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons.}, subject = {Voltage-Clamp-Methode}, language = {en} } @article{KruegerEngstler2018, author = {Kr{\"u}ger, Timothy and Engstler, Markus}, title = {The fantastic voyage of the trypanosome: a protean micromachine perfected during 500 million years of engineering}, series = {Micromachines}, volume = {9}, journal = {Micromachines}, number = {2}, doi = {10.3390/mi9020063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175944}, pages = {63}, year = {2018}, abstract = {The human body is constantly attacked by pathogens. Various lines of defence have evolved, among which the immune system is principal. In contrast to most pathogens, the African trypanosomes thrive freely in the blood circulation, where they escape immune destruction by antigenic variation and incessant motility. These unicellular parasites are flagellate microswimmers that also withstand the harsh mechanical forces prevailing in the bloodstream. They undergo complex developmental cycles in the bloodstream and organs of the mammalian host, as well as the disease-transmitting tsetse fly. Each life cycle stage has been shaped by evolution for manoeuvring in distinct microenvironments. Here, we introduce trypanosomes as blueprints for nature-inspired design of trypanobots, micromachines that, in the future, could explore the human body without affecting its physiology. We review cell biological and biophysical aspects of trypanosome motion. While this could provide a basis for the engineering of microbots, their actuation and control still appear more like fiction than science. Here, we discuss potentials and challenges of trypanosome-inspired microswimmer robots.}, language = {en} } @article{WernerChenMayaetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Maya, Yoshifumi and Eissler, Christoph and Hirano, Mitsuru and Nose, Naoko and Wakabayashi, Hiroshi and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11120}, issn = {2281-5872}, doi = {10.1038/s41598-018-29509-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164826}, year = {2018}, abstract = {We aimed to explore the impact of ageing on 11C-Hydroxyephedrine (11C-HED) uptake in the healthy rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of (-)-metaraminol as the free base (radiochemical purity >95\%) and a wide range of specific activities (0.2-141.9 GBq/μmol) were prepared. \(^{11}\)C-HED (48.7±9.7MBq, ranged 0.2-60.4μg/kg cold mass) was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED retention index (\%/min) was calculated as myocardial tissue activity at 20-30 min divided by the integral of the blood activity curves. Additionally, the impact of ageing on myocardial 11CHED uptake was investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be planned with extreme caution if one single radiosynthesis is scheduled for multiple animals.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @inproceedings{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Nose, Naoko and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on [\(^{11}\)C]meta-Hydroxyephedrine Uptake in the Rat Heart}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162228}, pages = {100}, year = {2018}, abstract = {No abstract available.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @inproceedings{WernerMarcusSheikhbahaeietal.2018, author = {Werner, Rudolf A. and Marcus, Charles and Sheikhbahaei, Sara and Higuchi, Takahiro and Solnes, Lilja B. and Rowe, Steven P. and Buck, Andreas K. and Lapa, Constantin and Javadi, Mehrbod S.}, title = {The Impact of Ageing on Dopamine Transporter Imaging}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162213}, pages = {1646}, year = {2018}, abstract = {No abstract available.}, subject = {Parkinson-Krankheit}, language = {en} } @phdthesis{Wedel2018, author = {Wedel, Carolin}, title = {The impact of DNA sequence and chromatin on transcription in \(Trypanosoma\) \(brucei\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For cellular viability, transcription is a fundamental process. Hereby, the DNA plays the most elemental and highly versatile role. It has long been known that promoters contain conserved and often well-defined motifs, which dictate the site of transcription initiation by providing binding sites for regulatory proteins. However, research within the last decade revealed that it is promoters lacking conserved promoter motifs and transcribing constitutively expressed genes that constitute the majority of promoters in eukaryotes. While the process of transcription initiation is well studied, whether defined DNA sequence motifs are required for the transcription of constitutively expressed genes in eukaryotes remains unknown. In the highly divergent protozoan parasite Trypanosoma brucei, most of the proteincoding genes are organized in large polycistronic transcription units. The genes within one polycistronic transcription unit are generally unrelated and transcribed by a common transcription start site for which no RNA polymerase II promoter motifs have been identified so far. Thus, it is assumed that transcription initiation is not regulated but how transcription is initiated in T. brucei is not known. This study aimed to investigate the requirement of DNA sequence motifs and chromatin structures for transcription initiation in an organism lacking transcriptional regulation. To this end, I performed a systematic analysis to investigate the dependence of transcription initiation on the DNA sequence. I was able to identify GT-rich promoter elements required for directional transcription initiation and targeted deposition of the histone variant H2A.Z, a conserved component during transcription initiation. Furthermore, nucleosome positioning data in this work provide evidence that sites of transcription initiation are rather characterized by broad regions of open and more accessible chromatin than narrow nucleosome depleted regions as it is the case in other eukaryotes. These findings highlight the importance of chromatin during transcription initiation. Polycistronic RNA in T. brucei is separated by adding an independently transcribed miniexon during trans-splicing. The data in this work suggest that nucleosome occupancy plays an important role during RNA maturation by slowing down the progressing polymerase and thereby facilitating the choice of the proper splice site during trans-splicing. Overall, this work investigated the role of the DNA sequence during transcription initiation and nucleosome positioning in a highly divergent eukaryote. Furthermore, the findings shed light on the conservation of the requirement of DNA motifs during transcription initiation and the regulatory potential of chromatin during RNA maturation. The findings improve the understanding of gene expression regulation in T. brucei, a eukaryotic parasite lacking transcriptional Regulation.}, subject = {Transkription}, language = {en} } @article{KaiserBurekBritzetal.2018, author = {Kaiser, Mathias and Burek, Malgorzata and Britz, Stefan and Lankamp, Frauke and Ketelhut, Steffi and Kemper, Bj{\"o}rn and F{\"o}rster, Carola and Gorzelanny, Christian and Goycoolea, Francisco M.}, title = {The influence of capsaicin on the integrity of microvascular endothelial cell monolayers}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms20010122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284865}, year = {2018}, abstract = {Microvascular endothelial cells are an essential part of many biological barriers, such as the blood-brain barrier (BBB) and the endothelium of the arteries and veins. A reversible opening strategy to increase the permeability of drugs across the BBB could lead to improved therapies due to enhanced drug bioavailability. Vanilloids, such as capsaicin, are known to reversibly open tight junctions of epithelial and endothelial cells. In this study, we used several in vitro assays with the murine endothelial capillary brain cells (line cEND) as a BBB model to characterize the interaction between capsaicin and endothelial tight junctions.}, language = {en} } @phdthesis{Teichert2018, author = {Teichert, Max}, title = {The interest rate risk of banks: current topics}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-070-2}, doi = {10.25972/WUP-978-3-95826-071-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153669}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {XIX, 252}, year = {2018}, abstract = {Die vorliegende Dissertation besch{\"a}ftigt sich mit dem Zins{\"a}nderungsrisiko von Banken. Sie bearbeitet Themen mit hoher aktueller Relevanz angesichts gegenw{\"a}rtiger Entwicklungen in der Geldpolitik, der Volkswirtschaftslehre und der Bankenregulierung. Im ersten Teil werden vier Grundlagen gelegt. Erstens wird die moderne Auffassung des Bankgesch{\"a}fts vorgestellt, der nach Banken Geld in Form von Ersparnissen schaffen, wenn sie Kredite gew{\"a}hren. Mit dieser Auffassung geh{\"o}rt die {\"U}bernahme von Zins{\"a}nderungsrisiken zum normalen Bankgesch{\"a}ft. Zweitens wird ein {\"U}berblick {\"u}ber die Mikro{\"o}konomie des Bankgesch{\"a}fts gegeben, in dem der j{\"u}ngst vollzogene Wechsel zum Paradigma des Risikos dargestellt wird. Unter diesem Paradigma sind Banken wesentlich Risikonehmer auch von Zins{\"a}nderungsrisiko. Drittens wird die Geldtheorie der Transmissionskan{\"a}le zusammengefasst, wobei der Fokus auf dem zuletzt starke Beachtung findenden Risikoneigungskanal liegt. Dieser Transmissionskanal stellt auch eine Verbindung zwischen der Geldpolitik und der {\"U}bernahme von Zins{\"a}nderungsrisiko durch Banken her. Viertens werden Ans{\"a}tze und Spezifika der Behandlung des Zins{\"a}nderungsrisikos von Banken in der {\"o}konomischen Forschung zusammengetragen. Das ist das Handwerkszeug f{\"u}r die Erarbeitung neuer Forschungsbeitr{\"a}ge. Im zweiten Teil werden drei Erweiterungen entwickelt. Die erste Erweiterung begegnet dem nahezu vollst{\"a}ndigen Fehlen von spezifischen Daten zum Zins{\"a}nderungsrisiko von Banken in Deutschland mit einer umfassenden Auswertung allgemeiner, {\"o}ffentlich verf{\"u}gbarer Statistiken. Es zeigt sich, dass das Zins{\"a}nderungsrisiko von Banken in Deutschland {\"u}ber dem Durchschnitt des Euroraums liegt und einem steigenden Trend folgt, der sich insbesondere aus einer Verschiebung hin zu kurzfristigerer Refinanzierung speist. Von den unterschiedlichen Arten von Banken in Deutschland pr{\"a}sentieren sich Sparkassen und Genossenschaftsbanken als besonders exponiert. Die zweite Erweiterung untersucht die Ver{\"a}nderungen der Zinsstruktur in Deutschland und nimmt damit die zweite Komponente des Zins{\"a}nderungsrisikos neben der Position der Banken in den Blick. Analysen historischer sowie prognostizierter Ver{\"a}nderungen weisen auf ein sinkendes Zins{\"a}nderungsrisiko hin. Auch auf Basis einer erg{\"a}nzenden Szenarioanalyse ergeben sich konkrete Kritikpunkte an j{\"u}ngst auf internationaler Ebene beschlossenen regulatorischen Standards sowie genaue Vorschl{\"a}ge zur Erg{\"a}nzung im Rahmen ihrer Implementierung. Die dritte Erweiterung adressiert ein m{\"o}gliches Streben nach Rendite (search for yield) von Banken bei der {\"U}bernahme von Zins{\"a}nderungsrisiko, die geringere Profitabilit{\"a}t zu h{\"o}herer Risiko{\"u}bernahme f{\"u}hren l{\"a}sst. Ein theoretisches Modell f{\"u}hrt dieses Verhalten auf eine plausible Nutzenfunktion von Bankmanagern zur{\"u}ck. Eine empirische Untersuchung belegt die statistische Signifikanz und {\"o}konomische Relevanz mit Daten aus Deutschland.}, subject = {Zins{\"a}nderungsrisiko}, language = {en} } @article{GroebnerWorstWeischenfeldtetal.2018, author = {Gr{\"o}bner, Susanne N. and Worst, Barbara C. and Weischenfeldt, Joachim and Buchhalter, Ivo and Kleinheinz, Kortine and Rudneva, Vasilisa A. and Johann, Pascal D. and Balasubramanian, Gnana Prakash and Segura-Wang, Maia and Brabetz, Sebastian and Bender, Sebastian and Hutter, Barbara and Sturm, Dominik and Pfaff, Elke and H{\"u}bschmann, Daniel and Zipprich, Gideon and Heinold, Michael and Eils, J{\"u}rgen and Lawerenz, Christian and Erkek, Serap and Lambo, Sander and Waszak, Sebastian and Blattmann, Claudia and Borkhardt, Arndt and Kuhlen, Michaela and Eggert, Angelika and Fulda, Simone and Gessler, Manfred and Wegert, Jenny and Kappler, Roland and Baumhoer, Daniel and Stefan, Burdach and Kirschner-Schwabe, Renate and Kontny, Udo and Kulozik, Andreas E. and Lohmann, Dietmar and Hettmer, Simone and Eckert, Cornelia and Bielack, Stefan and Nathrath, Michaela and Niemeyer, Charlotte and Richter, G{\"u}nther H. and Schulte, Johannes and Siebert, Reiner and Westermann, Frank and Molenaar, Jan J. and Vassal, Gilles and Witt, Hendrik and Burkhardt, Birgit and Kratz, Christian P. and Witt, Olaf and van Tilburg, Cornelis M. and Kramm, Christof M. and Fleischhack, Gudrun and Dirksen, Uta and Rutkowski, Stefan and Fr{\"u}hwald, Michael and Hoff, Katja von and Wolf, Stephan and Klingebeil, Thomas and Koscielniak, Ewa and Landgraf, Pablo and Koster, Jan and Resnick, Adam C. and Zhang, Jinghui and Liu, Yanling and Zhou, Xin and Waanders, Angela J. and Zwijnenburg, Danny A. and Raman, Pichai and Brors, Benedikt and Weber, Ursula D. and Northcott, Paul A. and Pajtler, Kristian W. and Kool, Marcel and Piro, Rosario M. and Korbel, Jan O. and Schlesner, Matthias and Eils, Roland and Jones, David T. W. and Lichter, Peter and Chavez, Lukas and Zapatka, Marc and Pfister, Stefan M.}, title = {The landscape of genomic alterations across childhood cancers}, series = {Nature}, volume = {555}, journal = {Nature}, organization = {ICGC PedBrain-Seq Project, ICGC MMML-Seq Project,}, doi = {10.1038/nature25480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229579}, pages = {321-327}, year = {2018}, abstract = {Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8\% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50\% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.}, language = {en} } @article{BoehmMeiningerTeschetal.2018, author = {Boehm, Anne and Meininger, Susanne and Tesch, Annemarie and Gbureck, Uwe and M{\"u}ller, Frank A.}, title = {The mechanical properties of biocompatible apatite bone cement reinforced with chemically activated carbon fibers}, series = {Materials}, volume = {11}, journal = {Materials}, number = {2}, issn = {1996-1944}, doi = {10.3390/ma11020192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197808}, pages = {192}, year = {2018}, abstract = {Calcium phosphate cement (CPC) is a well-established bone replacement material in dentistry and orthopedics. CPC mimics the physicochemical properties of natural bone and therefore shows excellent in vivo behavior. However, due to their brittleness, the application of CPC implants is limited to non-load bearing areas. Generally, the fiber-reinforcement of ceramic materials enhances fracture resistance, but simultaneously reduces the strength of the composite. Combining strong C-fiber reinforcement with a hydroxyapatite to form a CPC with a chemical modification of the fiber surface allowed us to adjust the fiber-matrix interface and consequently the fracture behavior. Thus, we could demonstrate enhanced mechanical properties of CPC in terms of bending strength and work of fracture to a strain of 5\% (WOF5). Hereby, the strength increased by a factor of four from 9.2 ± 1.7 to 38.4 ± 1.7 MPa. Simultaneously, the WOF5 increased from 0.02 ± 0.004 to 2.0 ± 0.6 kJ∙m-2, when utilizing an aqua regia/CaCl2 pretreatment. The cell proliferation and activity of MG63 osteoblast-like cells as biocompatibility markers were not affected by fiber addition nor by fiber treatment. CPC reinforced with chemically activated C-fibers is a promising bone replacement material for load-bearing applications.}, language = {en} }