@article{LapaLinsenmannLueckerathetal.2015, author = {Lapa, Constantin and Linsenmann, Thomas and L{\"u}ckerath, Katharina and Samnick, Samuel and Herrmann, Ken and Stoffer, Carolin and Ernestus, Ralf-Ingo and Buck, Andreas K. and L{\"o}hr, Mario and Monoranu, Camelia-Maria}, title = {Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy?}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0122269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125498}, pages = {e0122269}, year = {2015}, abstract = {Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10\% to >50\% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.}, language = {en} } @article{NovakovaSubileauToegeletal.2014, author = {Novakova, Iveta and Subileau, Eva-Anne and Toegel, Stefan and Gruber, Daniela and Lachmann, Bodo and Urban, Ernst and Chesne, Christophe and Noe, Christian R. and Neuhaus, Winfried}, title = {Transport Rankings of Non-Steroidal Antiinflammatory Drugs across Blood-Brain Barrier In Vitro Models}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0086806}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119992}, pages = {e86806}, year = {2014}, abstract = {The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB) in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line) for proper data comparison.}, language = {en} } @article{FeldheimWendLaueretal.2022, author = {Feldheim, Jonas and Wend, David and Lauer, Mara J. and Monoranu, Camelia M. and Glas, Martin and Kleinschnitz, Christoph and Ernestus, Ralf-Ingo and Braunger, Barbara M. and Meybohm, Patrick and Hagemann, Carsten and Burek, Malgorzata}, title = {Protocadherin Gamma C3 (PCDHGC3) is strongly expressed in glioblastoma and its high expression is associated with longer progression-free survival of patients}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {15}, issn = {1422-0067}, doi = {10.3390/ijms23158101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284433}, year = {2022}, abstract = {Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, β, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects.}, language = {en} } @article{RiegerBaehrMaureretal.2014, author = {Rieger, Johannes and B{\"a}hr, Oliver and Maurer, Gabriele D. and Hattingen, Elke and Franz, Kea and Brucker, Daniel and Walenta, Stefan and K{\"a}mmerer, Ulrike and Coy, Johannes F. and Weller, Michael and Steinbach, Joachim P.}, title = {ERGO: A pilot study of ketogenic diet in recurrent glioblastoma}, series = {International Journal of Oncology}, volume = {44}, journal = {International Journal of Oncology}, number = {6}, doi = {10.3892/ijo.2014.2382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121170}, pages = {1843-52}, year = {2014}, abstract = {Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15\%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92\%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3-13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86\%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12-124) weeks, for a PFS at 6 months of 43\%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (p<0.05). In conclusion, a ketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet.}, language = {en} } @article{SchulzeHuttererSaboetal.2018, author = {Schulze, Markus and Hutterer, Maria and Sabo, Anja and Hoja, Sabine and Lorenz, Julia and Rothhammer-Hampl, Tanja and Herold-Mende, Christel and Floßbach, Lucia and Monoranu, Camelia and Riemenschneider, Markus J.}, title = {Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions}, series = {BMC Cancer}, volume = {18}, journal = {BMC Cancer}, doi = {10.1186/s12885-018-4440-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234645}, year = {2018}, abstract = {Background The phosphatase chronophin (CIN/PDXP) has been shown to be an important regulator of glioma cell migration and invasion. It has two known substrates: p-Ser3-cofilin, the phosphorylated form of the actin binding protein cofilin, and pyridoxal 5′-phosphate, the active form of vitamin B6. Phosphoregulation of cofilin, among other functions, plays an important role in cell migration, whereas active vitamin B6 is a cofactor for more than one hundred enzymatic reactions. The role of CIN has yet only been examined in glioblastoma cell line models derived under serum culture conditions. Results We found that CIN is highly expressed in cells cultured under non-adherent, serum-free conditions that are thought to better mimic the in vivo situation. Furthermore, the substrates of CIN, p-Ser3-cofilin and active vitamin B6, were significantly reduced as compared to cell lines cultured in serum-containing medium. To further examine its molecular role we stably knocked down the CIN protein with two different shRNA hairpins in the glioblastoma cell lines NCH421k and NCH644. Both cell lines did not show any significant alterations in proliferation but expression of differentiation markers (such as GFAP or TUBB3) was increased in the knockdown cell lines. In addition, colony formation was significantly impaired in NCH644. Of note, in both cell lines CIN knockdown increased active vitamin B6 levels with vitamin B6 being known to be important for S-adenosylmethionine biosynthesis. Nevertheless, global histone and DNA methylation remained unaltered as was chemoresistance towards temozolomide. To further elucidate the role of phosphocofilin in glioblastoma cells we applied inhibitors for ROCK1/2 and LIMK1/2 to our model. LIMK- and ROCK-inhibitor treatment alone was not toxic for glioblastoma cells. However, it had profound, but antagonistic effects in NCH421k and NCH644 under chemotherapy. Conclusion In non-adherent glioblastoma cell lines cultured in serum-free medium, chronophin knockdown induces phenotypic changes, e.g. in colony formation and transcription, but these are highly dependent on the cellular background. The same is true for phenotypes observed after treatment with inhibitors for kinases regulating cofilin phosphorylation (ROCKs and LIMKs). Targeting the cofilin phosphorylation pathway might therefore not be a straightforward therapeutic option in glioblastoma.}, language = {en} } @article{FeldheimKesslerMonoranuetal.2019, author = {Feldheim, Jonas and Kessler, Almuth F. and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Changes of O\(^6\)-Methylguanine DNA Methyltransferase (MGMT) promoter methylation in glioblastoma relapse—a meta-analysis type literature review}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {12}, issn = {2072-6694}, doi = {10.3390/cancers11121837}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193040}, year = {2019}, abstract = {Methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter has emerged as strong prognostic factor in the therapy of glioblastoma multiforme. It is associated with an improved response to chemotherapy with temozolomide and longer overall survival. MGMT promoter methylation has implications for the clinical course of patients. In recent years, there have been observations of patients changing their MGMT promoter methylation from primary tumor to relapse. Still, data on this topic are scarce. Studies often consist of only few patients and provide rather contrasting results, making it hard to draw a clear conclusion on clinical implications. Here, we summarize the previous publications on this topic, add new cases of changing MGMT status in relapse and finally combine all reports of more than ten patients in a statistical analysis based on the Wilson score interval. MGMT promoter methylation changes are seen in 115 of 476 analyzed patients (24\%; CI: 0.21-0.28). We discuss potential reasons like technical issues, intratumoral heterogeneity and selective pressure of therapy. The clinical implications are still ambiguous and do not yet support a change in clinical practice. However, retesting MGMT methylation might be useful for future treatment decisions and we encourage clinical studies to address this topic}, language = {en} }