@article{SanderdeJongRosenwaldetal.2014, author = {Sander, Brigitta and de Jong, Daphne and Rosenwald, Andreas and Xie, Wanling and Balagu{\´e}, Olga and Calaminici, Maria and Carreras, Joaquim and Gaulard, Philippe and Gribben, John and Hagenbeek, Anton and Kersten, Marie Jos{\´e} and Molina, Thierry Jo and Lee, Abigail and Montes-Moreno, Santiago and Ott, German and Raemaekers, John and Salles, Gilles and Sehn, Laurie and Thorns, Christoph and Wahlin, Bjorn E. and Gascoyne, Randy D. and Weller, Edie}, title = {The reliability of immunohistochemical analysis of the tumor microenvironment in follicular lymphoma: a validation study from the Lunenburg Lymphoma Biomarker Consortium}, series = {Haematologica}, volume = {99}, journal = {Haematologica}, number = {4}, issn = {1592-8721}, doi = {10.3324/haematol.2013.095257}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116875}, pages = {715-725}, year = {2014}, abstract = {The cellular microenvironment in follicular lymphoma is of biological and clinical importance. Studies on the clinical significance of non-malignant cell populations have generated conflicting results, which may partly be influenced by poor reproducibility in immunohistochemical marker quantification. In this study, the reproducibility of manual scoring and automated microscopy based on a tissue microarray of 25 follicular lymphomas as compared to flow cytometry is evaluated. The agreement between manual scoring and flow cytometry was moderate for CD3, low for CD4, and moderate to high for CD8, with some laboratories scoring closer to the flow cytometry results. Agreement in manual quantification across the 7 laboratories was low to moderate for CD3, CD4, CD8 and FOXP3 frequencies, moderate for CD21, low for MIB1 and CD68, and high for CD10. Manual scoring of the architectural distribution resulted in moderate agreement for CD3, CD4 and CD8, and low agreement for FOXP3 and CD68. Comparing manual scoring to automated microscopy demonstrated that manual scoring increased the variability in the low and high frequency interval with some laboratories showing a better agreement with automated scores. Manual scoring reliably identified rare architectural patterns of T-cell infiltrates. Automated microscopy analyses for T-cell markers by two different instruments were highly reproducible and provided acceptable agreement with flow cytometry. These validation results provide explanations for the heterogeneous findings on the prognostic value of the microenvironment in follicular lymphoma. We recommend a more objective measurement, such as computer-assisted scoring, in future studies of the prognostic impact of microenvironment in follicular lymphoma patients.}, language = {en} } @article{LiedertRoentgenSchinkeetal.2014, author = {Liedert, Astrid and R{\"o}ntgen, Viktoria and Schinke, Thorsten and Benisch, Peggy and Ebert, Regina and Jakob, Franz and Klein-Hitpass, Ludger and Lennerz, Jochen K. and Amling, Michael and Ignatius, Anita}, title = {Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {7}, issn = {1932-6203}, doi = {10.1371/journal.pone.0103250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115782}, pages = {e103250}, year = {2014}, abstract = {The canonical Wnt/beta-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5(-/-)) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5(-/-) mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5(-/-) mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active beta-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.}, language = {en} } @article{KernAgarwalHuberetal.2014, author = {Kern, Selina and Agarwal, Shruti and Huber, Kilian and Gehring, Andre P. and Str{\"o}dke, Benjamin and Wirth, Christine C. and Br{\"u}gl, Thomas and Abodo, Liane Onambele and Dandekar, Thomas and Doerig, Christian and Fischer, Rainer and Tobin, Andrew B. and Alam, Mahmood M. and Bracher, Franz and Pradel, Gabriele}, title = {Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {9}, issn = {1932-6203}, doi = {10.1371/journal.pone.0105732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115405}, pages = {e105732}, year = {2014}, abstract = {Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-beta-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.}, language = {en} } @article{OliAbdelmohsenHentscheletal.2014, author = {Oli, Swarna and Abdelmohsen, Usama Ramadan and Hentschel, Ute and Schirmeister, Tanja}, title = {Identification of Plakortide E from the Caribbean Sponge Plakortis halichondroides as a Trypanocidal Protease Inhibitor using Bioactivity-Guided Fractionation}, series = {MARINE DRUGS}, volume = {12}, journal = {MARINE DRUGS}, number = {5}, issn = {1660-3397}, doi = {10.3390/md12052614}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116536}, pages = {2614-2622}, year = {2014}, abstract = {In this paper, we report new protease inhibitory activity of plakortide E towards cathepsins and cathepsin-like parasitic proteases. We further report on its anti-parasitic activity against Trypanosoma brucei with an IC50 value of 5 mu M and without cytotoxic effects against J774.1 macrophages at 100 mu M concentration. Plakortide E was isolated from the sponge Plakortis halichondroides using enzyme assay-guided fractionation and identified by NMR spectroscopy and mass spectrometry. Furthermore, enzyme kinetic studies confirmed plakortide E as a non-competitive, slowly-binding, reversible inhibitor of rhodesain.}, language = {en} } @article{FernandezRobredoSanchoJohnenetal.2014, author = {Fernandez-Robredo, P. and Sancho, A. and Johnen, S. and Recalde, S. and Gama, N. and Thumann, G. and Groll, J. and Garcia-Layana, A.}, title = {Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering}, series = {Journal of Ophtamology}, journal = {Journal of Ophtamology}, number = {510285}, issn = {2090-0058}, doi = {10.1155/2014/510285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118004}, year = {2014}, abstract = {Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruch's membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein.}, language = {en} }