@article{PilsKoppPetersonetal.2012, author = {Pils, Stefan and Kopp, Kathrin and Peterson, Lisa and Tascon, Julia Delgado and Nyffenegger-Jann, Naja J. and Hauck, Christof R.}, title = {The Adaptor Molecule Nck Localizes the WAVE Complex to Promote Actin Polymerization during CEACAM3-Mediated Phagocytosis of Bacteria}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0032808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131747}, pages = {e32808}, year = {2012}, abstract = {Background: CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings: In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions: Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.}, language = {en} } @article{AlzheimerSvenssonKoenigetal.2020, author = {Alzheimer, Mona and Svensson, Sarah L. and K{\"o}nig, Fabian and Schweinlin, Matthias and Metzger, Marco and Walles, Heike and Sharma, Cynthia M.}, title = {A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni}, series = {PLoS Pathogens}, volume = {16}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1008304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229454}, year = {2020}, abstract = {The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens.}, language = {en} }