@phdthesis{GraetzgebDittmann2022, author = {Graetz [geb. Dittmann], Jonas}, title = {X-Ray Dark-Field Tensor Tomography : a Hitchhiker's Guide to Tomographic Reconstruction and Talbot Imaging}, doi = {10.25972/OPUS-28143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281437}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques. To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis.}, subject = {Dreidimensionale Rekonstruktion}, language = {en} } @article{NoyaletIlgenBuerkleinetal.2022, author = {Noyalet, Laurent and Ilgen, Lukas and B{\"u}rklein, Miriam and Shehata-Dieler, Wafaa and Taeger, Johannes and Hagen, Rudolf and Neun, Tilmann and Zabler, Simon and Althoff, Daniel and Rak, Kristen}, title = {Vestibular aqueduct morphology and Meniere's disease - development of the vestibular aqueduct score by 3D analysis}, series = {Frontiers in Surgery}, volume = {9}, journal = {Frontiers in Surgery}, issn = {2296-875X}, doi = {10.3389/fsurg.2022.747517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312893}, year = {2022}, abstract = {Improved radiological examinations with newly developed 3D models may increase understanding of Meniere's disease (MD). The morphology and course of the vestibular aqueduct (VA) in the temporal bone might be related to the severity of MD. The presented study explored, if the VA of MD and non-MD patients can be grouped relative to its angle to the semicircular canals (SCC) and length using a 3D model. Scans of temporal bone specimens (TBS) were performed using micro-CT and micro flat panel volume computed tomography (mfpVCT). Furthermore, scans were carried out in patients and TBS by computed tomography (CT). The angle between the VA and the three SCC, as well as the length of the VA were measured. From these data, a 3D model was constructed to develop the vestibular aqueduct score (VAS). Using different imaging modalities it was demonstrated that angle measurements of the VA are reliable and can be effectively used for detailed diagnostic investigation. To test the clinical relevance, the VAS was applied on MD and on non-MD patients. Length and angle values from MD patients differed from non-MD patients. In MD patients, significantly higher numbers of VAs could be assigned to a distinct group of the VAS. In addition, it was tested, whether the outcome of a treatment option for MD can be correlated to the VAS.}, language = {en} } @article{GuggenbergerTorreLudwigetal.2022, author = {Guggenberger, Konstanze Viktoria and Torre, Giulia Dalla and Ludwig, Ute and Vogel, Patrick and Weng, Andreas Max and Vogt, Marius Lothar and Fr{\"o}hlich, Matthias and Schmalzing, Marc and Raithel, Esther and Forman, Christoph and Urbach, Horst and Meckel, Stephan and Bley, Thorsten Alexander}, title = {Vasa vasorum of proximal cerebral arteries after dural crossing - potential imaging confounder in diagnosing intracranial vasculitis in elderly subjects on black-blood MRI}, series = {European Radiology}, volume = {32}, journal = {European Radiology}, number = {2}, issn = {1432-1084}, doi = {10.1007/s00330-021-08181-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266524}, pages = {1276-1284}, year = {2022}, abstract = {Objectives Vessel wall enhancement (VWE) may be commonly seen on MRI images of asymptomatic subjects. This study aimed to characterize the VWE of the proximal internal carotid (ICA) and vertebral arteries (VA) in a non-vasculitic elderly patient cohort. Methods Cranial MRI scans at 3 Tesla were performed in 43 patients (aged ≥ 50 years) with known malignancy for exclusion of cerebral metastases. For vessel wall imaging (VWI), a high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo sequence (T1 CS-SPACE prototype) was applied post gadolinium with an isotropic resolution of 0.55 mm. Bilateral proximal intradural ICA and VA segments were evaluated for presence, morphology, and longitudinal extension of VWE. Results Concentric VWE of the proximal intradural ICA was found in 13 (30\%) patients, and of the proximal intradural VA in 39 (91\%) patients. Mean longitudinal extension of VWE after dural entry was 13 mm in the VA and 2 mm in the ICA. In 14 of 39 patients (36\%) with proximal intradural VWE, morphology of VWE was suggestive of the mere presence of vasa vasorum. In 25 patients (64 \%), morphology indicated atherosclerotic lesions in addition to vasa vasorum. Conclusions Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in elderly subjects. Concentric VWE in these locations should not be confused with large artery vasculitis. Distal to these segments, VWE may be more likely related to pathologic conditions such as vasculitis.}, language = {en} } @article{FrankPflaum2022, author = {Frank, Maximilian and Pflaum, Jens}, title = {Tuning Electronic and Ionic Transport by Carbon-Based Additives in Polymer Electrolytes for Thermoelectric Applications}, series = {Advanced Functional Materials}, volume = {32}, journal = {Advanced Functional Materials}, number = {32}, issn = {1616-301X}, doi = {10.1002/adfm.202203277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318908}, year = {2022}, abstract = {Thermoelectric materials utilizing ionic transport open-up entirely new possibilities for the recuperation of waste heat. Remarkably, solid state electrolytes which have entered the focus of battery research in recent years turn-out to be promising candidates also for ionic thermoelectrics. Here, the dynamics of ionic transport and thermoelectric properties of a methacrylate based polymer blend in combination with a lithium salt is analyzed. Impedance spectroscopy data indicates the presence of just one transport mechanism irrespective of lithium salt concentration. In contrast, the temperature dependent ionic conductivity increases with salt concentration and can be ascribed to a Vogel-Fulcher-Tammann (VFT) behavior. The obtained Seebeck coefficients of 2 mV K\(^{-1}\) allow for high power outputs while the polymer matrix maintains the temperature gradient by its low thermal conductivity. Adding multi-walled carbon nanotubes to the polymer matrix allows for variation of the Seebeck coefficient as well as the ionic and electronic conductivities. As a result, a transition between a high temperature VFT regime and a low temperature Arrhenius regime appears at a critical temperature, T\(_{c}\), shifting upon addition of salt. The observed polarity change in Seebeck voltage at T\(_{c}\) suggests a new mode of thermoelectric operation, which is demonstrated by a proof-of-concept mixed electronic-ionic-thermoelectric generator.}, language = {en} } @phdthesis{Mueller2022, author = {M{\"u}ller, Valentin Leander}, title = {Transport signatures of topological and trivial states in the three-dimensional topological insulator HgTe}, doi = {10.25972/OPUS-25952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259521}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The thesis at hand is concerned with improving our understanding of and our control over transport properties of the three-dimensional topological insulator HgTe. Topological insulators are characterized by an insulating bulk and symmetry-protected metallic surface states. These topological surface states hold great promise for research and technology; at the same time, many properties of experimentally accessible topological insulator materials still need to be explored thoroughly. The overall aim of this thesis was to experimentally investigate micrometer-sized HgTe transport devices to observe the ballistic transport regime as well as intercarrier scattering and possibly identify special properties of the topological surface states. Part I of the thesis presents lithographic developments concerned with etching small HgTe devices. The aim was to replace existing processes which relied on dry etching with high-energy \(\text{Ar}^+\) ions and an organic etch mask. This etching method is known to degrade the HgTe crystal quality. In addition, the etch mask turned out to be not durable for long etching processes and difficult to remove completely after etching. First, \(\text{BaF}_2\) was introduced as a new etch mask for dry etching to replace the organic etch mask. With common surface characterization techniques like SEM and XPS it was shown that \(\text{BaF}_2\) etch masks are easy to deposit, highly durable in common dry etching processes for \(\text{Hg}_{1-x}\text{Cd}_x\text{Te}\), and easy to remove in deionized water. Transport results of HgTe devices fabricated with the new etch mask are comparable to results obtained with the old process. At the same time, the new etch mask can withstand longer etching times and does not cause problems due to incomplete removal. Second, a new inductively coupled plasma dry etching process based on \(\text{CH}_4\) and Ar was introduced. This etching process is compatible with \(\text{BaF}_2\) etch masks and yields highly reproducible results. Transport results indicate that the new etching process does not degrade the crystal quality and is suitable to produce high-quality transport devices even in the micrometer range. A comparison with wet-etched samples shows that inductively coupled plasma etching introduces a pronounced edge roughness. This - usually undesirable - property is actually beneficial for some of the experiments in this study and mostly irrelevant for others. Therefore, most samples appearing in this thesis were fabricated with the new process. Part II of the thesis details the advancements made in identifying topological and trivial states which contribute to transport in HgTe three-dimensional topological insulators. To this end, macroscopic Hall bar samples were fabricated from high-quality tensilely strained HgTe layers by means of the improved lithographic processes. All samples were equipped with a top gate electrode, and some also with a modulation doping layer or a back gate electrode to modify the carrier density of the surface states on both sides of the HgTe layer. Due to the high sample quality, Landau levels could be well-resolved in standard transport measurements down to magnetic fields of less than 0.5T. High-resolution measurements of the Landau level dispersion with gate voltage and magnetic field allowed disentangling different transport channels. The main result here is that the upper (electron) branches of the two topological surface states contribute to transport in all experimentally relevant density regimes, while the hole branch is not accessible. Far in n-regime bulk conduction band states give a minor contribution to transport. More importantly, trivial bulk valence band holes come into play close to the charge neutrality point. Further in p-regime, the strong applied gate voltage leads to the formation of two-dimensional, massive hole states at the HgTe surface. The interplay of different states gives rise to rich physics: Top gate-back gate maps revealed that an anticrossing of Landau levels from the two topological surface states occurs at equal filling. A possible explanation for this effect is a weak hybridization of the surface states; however, future studies need to further clarify this point. Furthermore, the superposition of n-type topological and p-type trivial surface states leads to an intriguing Landau level dispersion. The good quantization of the Hall conductance in this situation indicates that the counterpropagating edge states interact with each other. The nature of this interaction will be the topic of further research. Part III of the thesis is focused on HgTe microstructures. These "channel samples" have a typical width of 0.5 to 4µm and a typical length of 5 to 80µm. The quality of these devices benefits particularly from the improved lithographic processes. As a result, the impurity mean free path of the topological surface state electrons is on the order of the device width and transport becomes semiballistic. This was verified by measuring the channel resistance in small magnetic fields in n-regime. The deflection of carriers towards the dissipative channel walls results in a pronounced peak in the magnetoresistance, which scales in a predictable manner with the channel width. To investigate transport effects due to mutual scattering of charge carriers, the differential resistance of channel samples was measured as a function of carrier temperature. Selective heating of the charge carriers - but not the lattice - was achieved by passing a heating current through the channel. Increasing the carrier temperature has two pronounced effects when the Fermi level is situated in proximity to the bulk valence band maximum where the density of states is large. First, when both topological surface state electrons and bulk holes are present, electron-hole scattering leads to a pronounced increase in resistance with increasing carrier temperature. Second, a thermally induced increase of the electron and hole carrier densities reduces the resistance again at higher temperatures. A model considering these two effects was developed, which can well reproduce the experimental results. Current heating experiments in zero-gap HgTe quantum wells and compressively strained HgTe layers are consistent with this model. These observations raise the question as to how electron-hole scattering may affect other transport properties of HgTe-based three-dimensional topological insulators, which is briefly discussed in the outlook.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Schmitt2022, author = {Schmitt, Fabian Bernhard}, title = {Transport properties of the three-dimensional topological insulator mercury telluride}, doi = {10.25972/OPUS-29173}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation. In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established. This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment. Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation. Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics.}, subject = {Topologischer Isolator}, language = {en} } @article{GramAlbertovaSchirmeretal.2022, author = {Gram, Maximilian and Albertova, P. and Schirmer, V. and Blaimer, M. and Gamer, M. and Herrmann, M. J. and Nordbeck, P. and Jakob, P. M.}, title = {Towards robust in vivo quantification of oscillating biomagnetic fields using Rotary Excitation based MRI}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-19275-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300862}, year = {2022}, abstract = {Spin-lock based functional magnetic resonance imaging (fMRI) has the potential for direct spatially-resolved detection of neuronal activity and thus may represent an important step for basic research in neuroscience. In this work, the corresponding fundamental effect of Rotary EXcitation (REX) is investigated both in simulations as well as in phantom and in vivo experiments. An empirical law for predicting optimal spin-lock pulse durations for maximum magnetic field sensitivity was found. Experimental conditions were established that allow robust detection of ultra-weak magnetic field oscillations with simultaneous compensation of static field inhomogeneities. Furthermore, this work presents a novel concept for the emulation of brain activity utilizing the built-in MRI gradient system, which allows REX sequences to be validated in vivo under controlled and reproducible conditions. Via transmission of Rotary EXcitation (tREX), we successfully detected magnetic field oscillations in the lower nano-Tesla range in brain tissue. Moreover, tREX paves the way for the quantification of biomagnetic fields.}, language = {en} } @article{GabelPickemScheidereretal.2022, author = {Gabel, Judith and Pickem, Matthias and Scheiderer, Philipp and Dudy, Lenart and Leikert, Berengar and Fuchs, Marius and St{\"u}binger, Martin and Schmitt, Matthias and K{\"u}spert, Julia and Sangiovanni, Giorgio and Tomczak, Jan M. and Held, Karsten and Lee, Tien-Lin and Claessen, Ralph and Sing, Michael}, title = {Toward Functionalized Ultrathin Oxide Films: The Impact of Surface Apical Oxygen}, series = {Advanced Electronic Materials}, volume = {8}, journal = {Advanced Electronic Materials}, number = {4}, issn = {2199-160X}, doi = {10.1002/aelm.202101006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318914}, year = {2022}, abstract = {Thin films of transition metal oxides open up a gateway to nanoscale electronic devices beyond silicon characterized by novel electronic functionalities. While such films are commonly prepared in an oxygen atmosphere, they are typically considered to be ideally terminated with the stoichiometric composition. Using the prototypical correlated metal SrVO\(_{3}\) as an example, it is demonstrated that this idealized description overlooks an essential ingredient: oxygen adsorbing at the surface apical sites. The oxygen adatoms, which are present even if the films are kept in an ultrahigh vacuum environment and not explicitly exposed to air, are shown to severely affect the intrinsic electronic structure of a transition metal oxide film. Their presence leads to the formation of an electronically dead surface layer but also alters the band filling and the electron correlations in the thin films. These findings highlight that it is important to take into account surface apical oxygen or—mutatis mutandis—the specific oxygen configuration imposed by a capping layer to predict the behavior of ultrathin films of transition metal oxides near the single unit-cell limit.}, language = {en} } @phdthesis{Harder2022, author = {Harder, Tristan H.}, title = {Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices}, doi = {10.25972/OPUS-25900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259008}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators.}, subject = {Exziton-Polariton}, language = {en} } @phdthesis{Mahler2022, author = {Mahler, David}, title = {Surface states in the topological material HgTe}, doi = {10.25972/OPUS-25398}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253982}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The motivation for this work has been contributing a step to the advancement of technology. A next leap in technology would be the realization of a scalable quantum computer. One potential route is via topological quantum computing. A profound understanding of topological materials is thus essential. My work contributes by the investigation of the exemplary topological material HgTe. The focus lies on the understanding of the topological surface states (TSS) and new possibilities to manipulate them appropriately. Traditionally top gate electrodes are used to adjust the carrier density in such semi-conductor materials. We found that the electric field of the top gate can further alter the properties of the HgTe layer. The formation of additional massive Volkov-Pankratov states limits the accessibility of the TSS. The understanding of these states and their interplay with the TSS is necessary to appropriately design devices and to ensure their desired properties. Similarly, I observed the existence and stability of TSSs even without a bandgap in the bulk band structure in the inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding of topological surface states in inversion-induced Dirac semi-metals provides a consistent and simple explanation for the observation reported for \(\text{Cd}_3\text{As}_2\). These observations have only been possible due to the high quality of the MBE grown HgTe layers and the access of different phases of HgTe via strain engineering. As a starting point I performed Magneto-transport measurements on 67 nm thick tensilely strained HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this three-dimensional topological insulator and successfully identified them. Not only do the expected topological surface states exist, but also additional massive surface states have been observed. These additional massive surface states are formed due to the electrical field applied at the top gate, which is routinely used to vary the carrier density in the HgTe layer. The additional massive surface states are called Volkov-Pankratov states after B. A. Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states at the interface of materials with mutually inverted bands. We first found indications for such massive Volkov-Pankratov states in high-frequency compressibility measurements for very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport measurements and \(k \cdot p\) calculations revealed that such Volkov-Pankratov states are also responsible for the observed whole transport. We also found indications for similar massive VPS in the electron regime, which coexist with the topological surface states. The topological surface states exist over the full investigated gate range including a regime of pure topological insulator transport. To increase the variability of the topological surface states we introduced a modulation doping layer in the buffer layer. This modulation doping layer also enabled us to separate and identify the top and bottom topological surface states. We used the variability of the bulk band structure of HgTe with strain to engineer the band structure of choice using virtual substrates. The virtual substrates enable us to grow compressively strained HgTe layers that do not possess a bandgap, but instead linear crossing points. These layers are predicted to beDirac semi-metals. Indeed I observed also topological surface states and massive Volkov-Pankratov states in the compressively strained Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac semi-metal phase has two consequences: First, it highlights that no bulk bandgap is necessary to observe topological surface states. Second, the observation of TSS also in the Dirac semi-metal phase emphasizes the importance of the underlying band inversion in this phase. I could not find any clear signatures of the predicted disjoint topological surface states, which are typically called Fermi-arcs. The presence of topological surface states and massive Volkov-Pankratov states offer a simple explanation for the observed quantum Hall effect and other two-dimensional transport phenomena in the class of inversion induced Dirac semi-metals, as \(\text{Cd}_3\text{As}_2\). This emphasizes the importance of the inherent bulk band inversion of different topological materials and provides a consistent and elegant explanation for the observed phenomena in these materials. Additionally, it offers a route to design further experiments, devices, and thus the foundation for the induction of superconductivity and thus topological quantum computing. Another possible path towards quantum computing has been proposed based on the chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests itself as an additional magnetic field-driven current in three-dimensional topological semimetals with a linear crossing point in their bulk band structure. I observed the chiral anomaly in compressively strained HgTe samples and performed multiple control experiments to identify the observed reduction of the magnetoresistance with the chiral anomaly. First, the dependence of the so-called negative magnetoresistance on the angle and strength of the magnetic field has been shown to fit the expectation for the chiral anomaly. Second, extrinsic effects as scattering could be excluded as a source for the observed negative MR using samples with different mobilities and thus impurity concentrations. Third, the necessity of the linear crossing point has been shown by shifting the electrochemical potential away from the linear crossing points, which diminished the negative magnetoresistance. Fourth, I could not observe a negative magnetoresistance in the three-dimensional topological insulator phase of HgTe. These observations together prove the existence of the chiral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal with a quadratic band touching point. This observation reveals the relevance of the Zeeman effect for the chiral anomaly due to the lifting of the spin-degeneracy in these samples. Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained HgTe showed other interesting effects. For low magnetic fields, a strong weak-antilocalization has been observed. Such a strong weak-anti-localization correction in a three-dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field strength and direction dependencies have been observed. These include a strong positive magnetoresistance for high magnetic fields, which could indicate a metal-insulator transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe constitutes the lower limit of the by strain engineering adjustable minimal carrier density of the topological surface states and thus of very high mobility. To sum up, topological surface states have been observed in the three-dimensional topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and accessibility of topological surface states are thus independent of the existence of a bandgap in the bulk band structure. The topological surface states can be accompanied by massive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely applied to adjust the carrier density in semiconductor devices. The theoretical predicted chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to theoretical predictions, no indications for the Fermi-arc called disjoint surface states have been observed, but instead the topological and massive Volkov-Pankratov surface states have been found. These states are thus expected for all inversion-induced topological materials.}, subject = {Quecksilbertellurid}, language = {en} }