@phdthesis{SchenkneeWolf2018, author = {Schenk [n{\´e}e Wolf], Mariela}, title = {Timing of wild bee emergence: mechanisms and fitness consequences}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161565}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Solitary bees in seasonal environments have to align their life-cycles with favorable environmental conditions and resources. Therefore, a proper timing of their seasonal activity is highly fitness relevant. Most species in temperate environments use temperature as a trigger for the timing of their seasonal activity. Hence, global warming can disrupt mutualistic interactions between solitary bees and plants if increasing temperatures differently change the timing of interaction partners. The objective of this dissertation was to investigate the mechanisms of timing in spring-emerging solitary bees as well as the resulting fitness consequences if temporal mismatches with their host plants should occur. In my experiments, I focused on spring-emerging solitary bees of the genus Osmia and thereby mainly on O. cornuta and O. bicornis (in one study which is presented in Chapter IV, I additionally investigated a third species: O. brevicornis). Chapter II presents a study in which I investigated different triggers solitary bees are using to time their emergence in spring. In a climate chamber experiment I investigated the relationship between overwintering temperature, body size, body weight and emergence date. In addition, I developed a simple mechanistic model that allowed me to unite my different observations in a consistent framework. In combination with the empirical data, the model strongly suggests that solitary bees follow a strategic approach and emerge at a date that is most profitable for their individual fitness expectations. I have shown that this date is on the one hand temperature dependent as warmer overwintering temperatures increase the weight loss of bees during hibernation, which then advances their optimal emergence date to an earlier time point (due to an earlier benefit from the emergence event). On the other hand I have also shown that the optimal emergence date depends on the individual body size (or body weight) as bees adjust their emergence date accordingly. My data show that it is not enough to solely investigate temperature effects on the timing of bee emergence, but that we should also consider individual body conditions of solitary bees to understand the timing of bee emergence. In Chapter III, I present a study in which I investigated how exactly temperature determines the emergence date of solitary bees. Therefore, I tested several variants degree-day models to relate temperature time series to emergence data. The basic functioning of such degree-day models is that bees are said to finally emerge when a critical amount of degree-days is accumulated. I showed that bees accumulate degree-days only above a critical temperature value (~4°C in O. cornuta and ~7°C in O. bicornis) and only after the exceedance of a critical calendar date (~10th of March in O. cornuta and ~28th of March in O. bicornis). Such a critical calendar date, before which degree-days are not accumulated irrespective of the actual temperature, is in general less commonly used and, so far, it has only been included twice in a phenology model predicting bee emergence. Furthermore, I used this model to retrospectively predict the emergence dates of bees by applying the model to long-term temperature data which have been recorded by the regional climate station in W{\"u}rzburg. By doing so, the model estimated that over the last 63 years, bees emerged approximately 4 days earlier. In Chapter IV, I present a study in which I investigated how temporal mismatches in bee-plant interactions affect the fitness of solitary bees. Therefore, I performed an experiment with large flight cages serving as mesocosms. Inside these mesocosms, I manipulated the supply of blossoms to synchronize or desynchronize bee-plant interactions. In sum, I showed that even short temporal mismatches of three and six days in bee-plant interactions (with solitary bee emergence before flower occurrence) can cause severe fitness losses in solitary bees. Nonetheless, I detected different strategies by solitary bees to counteract impacts on their fitness after temporal mismatches. However, since these strategies may result in secondary fitness costs by a changed sex ratio or increased parasitism, I concluded that compensation strategies do not fully mitigate fitness losses of bees after short temporal mismatches with their food plants. In the event of further climate warming, fitness losses after temporal mismatches may not only exacerbate bee declines but may also reduce pollination services for later-flowering species and affect populations of animal-pollinated plants. In conclusion, I showed that spring-emerging solitary bees are susceptible to climate change as in response to warmer temperatures bees advance their phenology and show a decreased fitness state. As spring-emerging solitary bees not only consider overwintering temperature but also their individual body condition for adjusting emergence dates, this may explain differing responses to climate warming within and among bee populations which may also have consequences for bee-plant interactions and the persistence of bee populations under further climate warming. If in response to climate warming plants do not shift their phenologies according to the bees, bees may experience temporal mismatches with their host plants. As bees failed to show a single compensation strategy that was entirely successful in mitigating fitness consequences after temporal mismatches with their food plants, the resulting fitness consequences for spring-emerging solitary bees would be severe. Furthermore, I showed that spring-emerging solitary bees use a critical calendar date before which they generally do not commence the summation of degree-days irrespective of the actual temperature. I therefore suggest that further studies should also include the parameter of a critical calendar date into degree-day model predictions to increase the accuracy of model predictions for emergence dates in solitary bees. Although our retrospective prediction about the advance in bee emergence corresponds to the results of several studies on phenological trends of different plant species, we suggest that more research has to be done to assess the impacts of climate warming on the synchronization in bee-plant interactions more accurately.}, subject = {wild bees}, language = {en} } @phdthesis{Nuernberger2018, author = {N{\"u}rnberger, Fabian}, title = {Timing of colony phenology and foraging activity in honey bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155105}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {I. Timing is a crucial feature in organisms that live within a variable and changing environment. Complex mechanisms to measure time are wide-spread and were shown to exist in many taxa. These mechanisms are expected to provide fitness benefits by enabling organisms to anticipate environmental changes and adapt accordingly. However, very few studies have addressed the adaptive value of proper timing. The objective of this PhD-project was to investigate mechanisms and fitness consequences of timing decisions concerning colony phenology and foraging activity in the honey bee (Apis mellifera), a social insect species with a high degree of social organization and one of the most important pollinators of wild plants and crops. In chapter II, a study is presented that aimed to identify the consequences of disrupted synchrony between colony phenology and the local environment by manipulating the timing of brood onset after hibernation. In a follow-up experiment, the importance of environmental factors for the timing of brood onset was investigated to assess the potential of climate change to disrupt synchronization of colony phenology (Chapter III). Chapter IV aimed to prove for the first time that honey bees can use interval time-place learning to improve foraging activity in a variable environment. Chapter V investigates the fitness benefits of information exchange between nest mates via waggle dance communication about a resource environment that is heterogeneous in space and time. II. In the study presented in chapter II, the importance of the timing of brood onset after hibernation as critical point in honey bee colony phenology in temperate zones was investigated. Honey bee colonies were overwintered at two climatically different sites. By translocating colonies from each site to the other in late winter, timing of brood onset was manipulated and consequently colony phenology was desynchronized with the local environment. Delaying colony phenology in respect to the local environment decreased the capability of colonies to exploit the abundant spring bloom. Early brood onset, on the other hand, increased the loads of the brood parasite Varroa destructor later in the season with negative impact on colony worker population size. This indicates a timing related trade-off and illustrates the importance of investigating effects of climate change on complex multi-trophic systems. It can be concluded that timing of brood onset in honey bees is an important fitness relevant step for colony phenology that is highly sensitive to climatic conditions in late winter. Further, phenology shifts and mismatches driven by climate change can have severe fitness consequences. III. In chapter III, I assess the importance of the environmental factors ambient temperature and photoperiod as well as elapsed time on the timing of brood onset. Twenty-four hibernating honey bee colonies were placed into environmental chambers and allocated to different combinations of two temperature regimes and three different light regimes. Brood onset was identified non-invasively by tracking comb temperature within the winter cluster. The experiment revealed that ambient temperature plays a major role in the timing of brood onset, but the response of honey bee colonies to temperature increases is modified by photoperiod. Further, the data indicate the involvement of an internal clock. I conclude that the timing of brood onset is complex but probably highly susceptible to climate change and especially spells of warm weather in winter. IV. In chapter IV, it was examined if honey bees are capable of interval time-place learning and if this ability improves foraging efficiency in a dynamic resource environment. In a field experiment with artificial feeders, foragers were able to learn time intervals and use this ability to anticipate time periods during which feeders were active. Further, interval time-place learning enabled foragers to increase nectar uptake rates. It was concluded that interval time-place learning can help honey bee foragers to adapt to the complex and variable temporal patterns of floral resource environments. V. The study presented in chapter V identified the importance of the honey bee waggle dance communication for the spatiotemporal coordination of honey bee foraging activity in resource environments that can vary from day to day. Consequences of disrupting the instructional component of honey bee dance communication were investigated in eight temperate zone landscapes with different levels of spatiotemporal complexity. While nectar uptake of colonies was not affected, waggle dance communication significantly benefitted pollen harvest irrespective of landscape complexity. I suggest that this is explained by the fact that honey bees prefer to forage pollen in semi-natural habitats, which provide diverse resource species but are sparse and presumably hard to find in intensively managed agricultural landscapes. I conclude that waggle dance communication helps to ensure a sufficient and diverse pollen diet which is crucial for honey bee colony health. VI. In my PhD-project, I could show that honey bee colonies are able to adapt their activities to a seasonally and daily changing environment, which affects resource uptake, colony development, colony health and ultimately colony fitness. Ongoing global change, however, puts timing in honey bee colonies at risk. Climate change has the potential to cause mismatches with the local resource environment. Intensivation of agricultural management with decreased resource diversity and short resource peaks in spring followed by distinctive gaps increases the probability of mismatches. Even the highly efficient foraging system of honey bees might not ensure a sufficiently diverse and healthy diet in such an environment. The global introduction of the parasitic mite V. destructor and the increased exposure to pesticides in intensively managed landscapes further degrades honey bee colony health. This might lead to reduced cognitive capabilities in workers and impact the communication and social organization in colonies, thereby undermining the ability of honey bee colonies to adapt to their environment.}, subject = {Biene}, language = {en} } @phdthesis{Hofmann2018, author = {Hofmann, Lukas}, title = {The α-galactosidase A deficient mouse as a model for Fabry disease and the effect of Gb3 depositions on peripheral nociceptive ion channel function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158513}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A deficiency. We studied α-galactosidase A knockout mice (GLA KO) as a model for sensory disturbance and pain in FD. Pain associated behavior of young (3 months) and old (≥18 months) GLA KO mice and wildtype (WT) littermates in an inflammatory and a neuropathic pain model was investigated. Furthermore, affective and cognitive behavior was assessed in the na{\"i}ve state and in an inflammatory pain model. Gene and protein expression of pain associated ion channels and Gb3 accumulation in dorsal root ganglion (DRG) neurons was determined. We also performed patch clamp analysis on cultivated DRG neurons and human embryonic kidney 293 (HEK) cells expressing voltage-gated-sodium channel 1.7 (Nav1.7) as an in vitro model of FD. Intracellular Gb3 deposits were modulated using shRNA silencing of α-galactosidase A. After intraplantar injection of complete Freund`s adjuvant (CFA) and chronic constriction injury (CCI) of the right sciatic nerve, old GLA KO mice did not develop heat and mechanical hypersensitivity in contrast to young GLA KO and old WT mice. Additionally, we found no relevant differences between genotypes and age-groups in affective and cognitive behavior in the na{\"i}ve state and after CFA injection. Gene and protein expression analysis provided no explanation for the observed sensory impairment. However, cultured DRG neurons of old GLA KO mice revealed a marked decrease of sodium and Ih-currents compared to young GLA KO and old WT mice. DRG neurons of old GLA KO mice displayed substantial intracellular accumulation of Gb3 compared to young GLA KO and old WT mice. Similar to cultured neurons, sodium currents were also decreased in HEK cells treated with shRNA and consecutively increased intracellular Gb3 deposits compared to the control condition, but could be rescued by treatment with agalsidase-alpha. Our study unveils that, similar to patients with FD, GLA KO mice display age-dependent sensory deficits. However, contrary to patients, GLA KO mice are also protected from hypersensitivity induced by inflammation and nerve lesion due to Gb3-dependent and reversible reduction of neuronal sodium- and Ih-currents. Our data provide evidence for direct Gb3-dependent ion channel impairment in sensory DRG neurons as a potential contributor to sensory dysfunction and pain in FD.}, subject = {Fabry-Krankheit}, language = {en} } @phdthesis{Ziegenhals2018, author = {Ziegenhals, Thomas}, title = {The role of the miR-26 family in neurogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For the differentiation of a embryonic stem cells (ESCs) to neuronal cells (NCs) a complex and coordinated gene regulation program is needed. One important control element for neuronal differentiation is the repressor element 1 silencing transcription factor (REST) complex, which represses neuronal gene expression in non-neuronal cells. Crucial effector proteins of the REST complex are small phosphatases such as the CTDSPs (C-terminal domain small phosphatases) that regulate polymerase II activity by dephosphorylating the C-terminal domain of the polymerase, thereby repressing target genes. The stepwise inactivation of REST, including the CTDSPs, leads to the induction of a neuron-specific gene program, which ultimately induces the formation of neurons. The spatio-temporal control of REST and its effector components is therefore a crucial step for neurogenesis. In zebrafish it was shown that the REST-associated CTDSP2 is negatively regulated by the micro RNA (miR) -26b. Interestingly, the miR-26b is encoded in an intron of the primary transcript of CTDSP2. This gives the fundament of an intrinsic regulatory negative feedback loop, which is essential for the proceeding of neurogenesis. This feedback loop is active during neurogenesis, but inactive in non-neuronal cells. The reason for this is that the maturation of the precursor miR (pre-miR) to the mature miR-26 is arrested in non neuronal cells, but not in neurons. As only mature miRs are actively repressing genes, the regulation of miR-26 processing is an essential step in neurogenesis. In this study, the molecular basis of miR-26 processing regulation in the context of neurogenesis was addressed. The mature miR is processed from two larger precursors: First the primary transcript is cleaved by the enzyme DROSHA in the nucleus to form the pre-miR. The pre-miR is exported from the nucleus and processed further through the enzyme DICER to yield the mature miR. The mature miR can regulate gene expression in association with the RNA-induced silencing complex (RISC). Multiple different scenarios in which miR processing was regulated were proposed and experimentally tested. Microinjection studies using Xenopus leavis oocytes showed that slowdown or blockage of the nucleo-cytoplasmic transport are not the reason for delayed pre-miR-26 processing. Moreover, in vitro and in vivo miR-processing assays showed that maturation is most likely regulated through a in trans acting factor, which blocks processing in non neuronal cells. Through RNA affinity chromatographic assays using zebrafish and murine lysates I was able to isolate and identify proteins that interact specifically with pre-miR-26 and could by this influence its biogenesis. Potential candidates are FMRP/FXR1/2, ZNF346 and Eral1, whose functional characterisation in the context of miR-biogenesis could now be addressed. The second part of my thesis was executed in close colaboration with the laboratory of Prof. Albrecht M{\"u}ller. The principal question was addressed how miR-26 influences neuronal gene expression and which genes are primarily affected. This research question could be addressed by using a cell culture model system, which mimics ex vivo the differentiation of ESCs to NCs via neuronal progenitor. For the functional analysis of miR-26 knock out cell lines were generated by the CRISPR/Cas9 technology. miR-26 deficient ESC keep their pluripotent state and are able to develop NPC, but show major impairment in differentiating to NCs. Through RNA deep sequencing the miR-26 induced transcriptome differences could be analysed. On the level of mRNAs it could be shown, that the expression of neuronal gene is downregulated in miR-26 deficient NCs. Interestingly, the deletion of miR-26 leads to selectively decreased levels of miRs, which on one hand regulate the REST complex and on the other hand are under transcriptional control by REST themself. This data and the discovery that induction of miR-26 leads to enrichment of other REST regulating miRs indicates that miR-26 initiates neurogenesis through stepwise inactivation of the REST complex.}, subject = {miRNS}, language = {en} } @phdthesis{Raab2018, author = {Raab, Annette}, title = {The role of Rgs2 in animal models of affective disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Anxiety and depressive disorders result from a complex interplay of genetic and environmental factors and are common mutual comorbidities. On the level of cellular signaling, regulator of G protein signaling 2 (Rgs2) has been implicated in human and rodent anxiety as well as rodent depression. Rgs2 negatively regulates G protein-coupled receptor (GPCR) signaling by acting as a GTPase accelerating protein towards the Gα subunit. The present study investigates, whether mice with a homozygous Rgs2 deletion (Rgs2-/-) show behavioral alterations as well as an increased susceptibility to stressful life events related to human anxiety and depressive disorders and tries to elucidate molecular underlying's of these changes. To this end, Rgs2-/- mice were characterized in an aversive-associative learning paradigm to evaluate learned fear as a model for the etiology of human anxiety disorders. Spatial learning and reward motivated spatial learning were evaluated to control for learning in non-aversive paradigms. Rgs2 deletion enhanced learning in all three paradigms, rendering increased learning upon deletion of Rgs2 not specific for aversive learning. These data support reports indicating increased long-term potentiation in Rgs2-/- mice and may predict treatment response to conditioning based behavior therapy in patients with polymorphisms associated with reduced RGS2 expression. Previous reports of increased innate anxiety were corroborated in three tests based on the approach-avoidance conflict. Interestingly, Rgs2-/- mice showed novelty-induced hypo-locomotion suggesting neophobia, which may translate to the clinical picture of agoraphobia in humans and reduced RGS2 expression in humans was associated with a higher incidence of panic disorder with agoraphobia. Depression-like behavior was more distinctive in female Rgs2-/- mice. Stress resilience, tested in an acute and a chronic stress paradigm, was also more distinctive in female Rgs2-/- mice, suggesting Rgs2 to contribute to sex specific effects of anxiety disorders and depression. Rgs2 deletion was associated with GPCR expression changes of the adrenergic, serotonergic, dopaminergic and neuropeptide Y systems in the brain and heart as well as reduced monoaminergic neurotransmitter levels. Furthermore, the expression of two stress-related microRNAs was increased upon Rgs2 deletion. The aversive-associative learning paradigm induced a dynamic Rgs2 expression change. The observed molecular changes may contribute to the anxious and depressed phenotype as well as promote altered stress reactivity, while reflecting an alter basal stress level and a disrupted sympathetic tone. Dynamic Rgs2 expression may mediate changes in GPCR signaling duration during memory formation. Taken together, Rgs2 deletion promotes increased anxiety-like and depression-like behavior, altered stress reactivity as well as increased cognitive function.}, subject = {Angst}, language = {en} } @phdthesis{Chowdhury2018, author = {Chowdhury, Suvagata Roy}, title = {The Role of MicroRNAs in \(Chlamydia\) Infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The obligate intracellular pathogen Chlamydia trachomatis is the causative agent of trachoma related blindness and the sexually transmitted pelvic inflammatory disease. Being an obligate intracellular pathogen, C. trachomatis has an intricate dependency on the survival of the host cell. This relationship is indispensible owing to the fact that the pathogen spends a considerable fraction of its biphasic lifecycle within a cytoplasmic vacuole inside the host cell, the so-called chlamydial inclusion. The cellular apoptotic-signalling network is governed by several finely tuned regulatory cascades composed of pro- and anti-apoptotic proteins that respond to changes in the cellular homeostasis. In order to facilitate its intracellular survival, Chlamydia has been known to inhibit the premature apoptosis of the host cell via the stabilization of several host anti-apoptotic proteins such as cIAP2 and Mcl-1. While the pro- and anti-apoptotic proteins are the major regulators of the host apoptotic signalling network, a class of the small non-coding RNAs called microRNAs (miRNAs) has increasingly gained focus as a new level of regulatory control over apoptosis. This work investigates the changes in the host miRNA expression profile post Chlamydia infection using a high throughput miRNA deep sequencing approach. Several miRNAs previously associated with the modulation for apoptotic signalling were differentially expressed upon Chlamydia infection in human endothelial cells. Of the differentially regulated miRNAs, miR-30c-5p was of particular interest since it had been previously shown to target the tumor suppressor protein p53. Our lab and others have previously demonstrated that Chlamydia can downregulate the levels of p53 by promoting its proteasomal degradation. This work demonstrates that Chlamydia infection promotes p53 downregulation by increasing the abundance of miR-30c-5p and a successful infection cycle is hindered by a loss of miR-30c-5p. Over the last decade, dedicated research aimed towards a better understanding of apoptotic stimuli has greatly improved our grasp on the subject. While extrinsic stress, deprivation of survival signals and DNA damage are regarded as major proponents of apoptotic induction, a significant responsibility lies with the mitochondrial network of the cell. Mitochondrial function and dynamics are crucial to cell fate determination and dysregulation of either is decisive for cell survival and pathogenesis of several diseases. The ability of the mitochondrial network to perform its essential tasks that include ATP synthesis, anti-oxidant defense, and calcium homeostasis amongst numerous other processes critical to cellular equilibrium is tied closely to the fission and fusion of individual mitochondrial fragments. It is, thus, 8 unsurprising that mitochondrial dynamics is closely linked to apoptosis. In fact, many of the proteins involved regulation of mitochondrial dynamics are also involved in apoptotic signalling. The mitochondrial fission regulator, Drp1 has previously been shown to be transcriptionally regulated by p53 and is negatively affected by a miR- 30c mediated inhibition of p53. Our investigation reveals a significant alteration in the mitochondrial dynamics of Chlamydia infected cells affected by the loss of Drp1. We show that loss of Drp1 upon chlamydial infection is mediated by the miR-30c-5p induced depletion of p53 and results in a hyper-fused architecture of the mitochondrial network. While it is widely accepted that Chlamydia depends on the host cell metabolism for its intracellular growth and development, the role of mitochondria in an infected cell, particularly with respect to its dynamic nature, has not been thoroughly investigated. This work attempts to illustrate the dependence of Chlamydia on miR-30c-5p induced changes in the mitochondrial architecture and highlight the importance of these modulations for chlamydial growth and development.}, subject = {Chlamydienkrankheit}, language = {en} } @phdthesis{TawkTaouk2018, author = {Tawk [Taouk], Caroline S.}, title = {The role of host-stress in the infection by the bacterial pathogen \(Shigella\) \(flexneri\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The human-bacterial pathogen interaction is a complex process that results from a prolonged evolutionary arms race in the struggle for survival. The pathogen employs virulence strategies to achieve host colonization, and the latter counteracts using defense programs. The encounter of both organisms results in drastic physiological changes leading to stress, which is an ancient response accompanying infection. Recent evidence suggests that the stress response in the host converges with the innate immune pathways and influences the outcome of infection. However, the contribution of stress and the exact mechanism(s) of its involvement in host defense remain to be elucidated. Using the model bacterial pathogen Shigella flexneri, and comparing it with the closely related pathogen Salmonella Typhimurium, this study investigated the role of host stress in the outcome of infection. Shigella infection is characterized by a pronounced pro-inflammatory response that causes intense stress in host tissues, particularly the intestinal epithelium, which constitutes the first barrier against Shigella colonization. In this study, inflammatory stress was simulated in epithelial cells by inducing oxidative stress, hypoxia, and cytokine stimulation. Shigella infection of epithelial cells exposed to such stresses was strongly inhibited at the adhesion/binding stage. This resulted from the depletion of sphingolipidrafts in the plasma membrane by the stress-activated sphingomyelinases. Interestingly, Salmonella adhesion was not affected, by virtue of its flagellar motility, which allowed the gathering of bacteria at remaining membrane rafts. Moreover, the intracellular replication of Shigella lead to a similar sphingolipid-raft depletion in the membrane across adjacent cells inhibiting extracellular bacterial invasion. Additionally, this study shows that Shigella infection interferes with the host stress granule-formation in response to stress. Interestingly, infected cells exhibited a nuclear depletion of the global RNA-binding stress-granule associated proteins TIAR and TIA-1 and their accumulation in the cytoplasm. Overall, this work investigated different aspects of the host stress-response in the defense against bacterial infection. The findings shed light on the importance of the host stress-pathways during infection, and improve the understanding of different strategies in host-pathogen interaction.}, subject = {Shigella flexneri}, language = {en} } @phdthesis{Collenburg2018, author = {Collenburg, Lena}, title = {The Role of Ceramides and Sphingomyelinases for Dynamic Membrane Processes in T Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Previous work of our group has established a role of sphingomyelinases in the regulation of T cell responses to TCR or pathogen stimulation, and this became particularly evident at the level of actin cytoskeletal dynamics. The formation of lipid membrane microdomains is crucial for receptor clustering and signal induction, and therefore, ceramide accumulation by membrane sphingomyelin breakdown is needed for signalling- complex-assembly. Pathogen-induced overshooting of SMase activation substantially impacted the formation of membrane protrusions, with T cell spreading as well as a front/rear polarisation upon CD3/CD28 co-stimulation [103]. On the other hand, NSM activation is part of the physiological TCR signal [67], indicating that a spatiotemporally balanced NSM activation is crucial for its physiological function. It involves actin cytoskeletal reorganisation and T cell polarisation. These two functions are also of central importance in directional T cell migration and motility in tissues. This thesis aims on defining the role of NSM in compartmentalisation of the T cell membrane in polarisation and migration. Therefore, functional studies on the impact of NSM activity in these processes had to be complemented by the development of tools to study ceramide compartmentalisation in living T cells.}, subject = {Ceramides}, language = {en} } @phdthesis{Kleffel2018, author = {Kleffel, Sonja Beate}, title = {The role of cancer cell-expressed PD-1 in tumorigenesis and tumor immune evasion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Melanoma and Merkel cell carcinoma (MCC) are highly aggressive cancers of the skin that frequently escape immune recognition and acquire resistance to chemotherapeutic agents, which poses a major obstacle to successful cancer treatment. Recently, a new class of therapeutics targeting the programmed cell death-1 (PD-1) immune checkpoint receptor has shown remarkable efficacy in the treatment of both cancers. Blockade of PD-1 on T cells activates cancer-specific immune responses that can mediate tumor regression. The data presented in this Ph.D. thesis demonstrates that PD-1 is also expressed by subsets of cancer cells in melanoma and MCC. Moreover, this work identifies PD-1 as a novel tumor cell-intrinsic growth receptor, even in the absence of T cell immunity. PD-1 is expressed by tumorigenic cell subsets in melanoma patient samples and established human and murine cell lines that also co-express ABCB5, a marker of immunoregulatory tumor- initiating cells in melanoma. Consistently, melanoma-expressed PD-1 downmodulates T effector cell functions and increases the intratumoral frequency of tolerogenic myeloid- derived suppressor cells. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, including in mice lacking adaptive immunity. Engagement of melanoma- PD-1 by its ligand PD-L1 promotes tumor growth, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuates growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor activates mTOR signaling mediators, including ribosomal protein S6. In a proof-of-concept study, tumoral expression of phospho-S6 in pretreatment tumor biopsies correlated with clinical responses to anti-PD-1 therapy in melanoma patients. In MCC, PD-1 is similarly co-expressed by ABCB5+ cancer cell subsets in clinical tumor specimens and established human cell lines. ABCB5 renders MCC cells resistant to the standard-of-care chemotherapeutic agents, carboplatin and etoposide. Antibody-mediated ABCB5 blockade reverses chemotherapy resistance and inhibits tumor xenograft growth by enhancing chemotherapy-induced tumor cell killing. Furthermore, engagement of MCC-expressed PD-1 by its ligands, PD-L1 and PD-L2, promotes proliferation and activates MCC-intrinsic mTOR signaling. Consistently, antibody- mediated PD-1 blockade inhibits MCC tumor xenograft growth and phosphorylation of mTOR effectors in immunocompromised mice. In summary, these findings identify cancer cell-intrinsic functions of the PD-1 pathway in tumorigenesis and suggest that blocking melanoma- and MCC-expressed PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. Additionally, these results establish ABCB5 as a previously unrecognized chemoresistance mechanism in MCC.}, subject = {Melanom}, language = {en} } @phdthesis{Pennington2018, author = {Pennington, Laura Sophie}, title = {The role of Cadherin-13 in serotonergic neurons during different murine developmental stages}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161331}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Abstract Background: Attention-deficit/ hyperactivity disorder (ADHD) ranges among the most common neurodevelopmental disorders worldwide with a prevalence of 3-12\% in childhood and 1-5\% for adults. Over the last decade extensive genetic research has been conducted in order to determine its causative genetic factors. None of the so far identified susceptibility genes, however, could explain the estimated ADHD heritability of 76\%. In this thesis one of the most promising candidates -Cadherin 13 (Cdh13) - was examined in terms of its influence on the central serotonergic (5-HT) system. In addition to that, the Cdh13 protein distribution pattern was analysed over time. Methods: The developing serotonergic system was compared over three embryonic and postnatal stages (E13.5, E17.5 and P7) in different Cdh13 genotypes (WT, HZ and KO) using immunohistochemistry and various double staining protocols. Results: The raphe nuclei of the 5-HT system develop in spite of Cdh13 absence and show a comparable mature constellation. The cells in the KO, however, are slightly more scattered than in the WT. Furthermore the dynamics of their formation is altered, with a transient delay in migration at E13.5. In early developmental stages the total amount of serotonergic cells is reduced in KO and HZ, though their proportional distribution to the raphe nuclei stays constant. Strikingly, at P7 the absolute numbers are comparable again. Concerning the Cdh13 protein, it shows high concentrations on fibres running through hindbrain and midbrain areas at E13.5. This, however, changes over time, and it becomes more evenly spread until P7. Furthermore, its presence in serotonergic cells could be visualised using confocal microscopy. Since the described pattern is only in parts congruent to the localisation of serotonergic neurons, it is most likely that Cdh13 is present in other developing neurotransmitter systems, such as the dopaminergic one, as well. Conclusion: It could be proven that Cdh13 is expressed in serotonergic cells and that its knockout does affect the developing serotonergic system to some degree. Its absence, however, only slightly and transiently affects the measured parameters of serotonergic system development, indicating a possible compensation of CDH13 function by other molecules in the case of Cdh13 deficiency. In addition further indicators could be found for an influence of Cdh13 on outgrowth and path finding of neuronal processes.}, subject = {Cadherine}, language = {en} }