@article{SilwedelSpeerHaarmannetal.2018, author = {Silwedel, Christine and Speer, Christian P. and Haarmann, Axel and Fehrholz, Markus and Claus, Heike and Buttmann, Mathias and Glaser, Kirsten}, title = {Novel insights into neuroinflammation: bacterial lipopolysaccharide, tumor necrosis factor α, and Ureaplasma species differentially modulate atypical chemokine receptor 3 responses in human brain microvascular endothelial cells}, series = {Journal of Neuroinflammation}, volume = {15}, journal = {Journal of Neuroinflammation}, number = {156}, doi = {10.1186/s12974-018-1170-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175952}, year = {2018}, abstract = {Background: Atypical chemokine receptor 3 (ACKR3, synonym CXCR7) is increasingly considered relevant in neuroinflammatory conditions, in which its upregulation contributes to compromised endothelial barrier function and may ultimately allow inflammatory brain injury. While an impact of ACKR3 has been recognized in several neurological autoimmune diseases, neuroinflammation may also result from infectious agents, including Ureaplasma species (spp.). Although commonly regarded as commensals of the adult urogenital tract, Ureaplasma spp. may cause invasive infections in immunocompromised adults as well as in neonates and appear to be relevant pathogens in neonatal meningitis. Nonetheless, clinical and in vitro data on Ureaplasma-induced inflammation are scarce. Methods: We established a cell culture model of Ureaplasma meningitis, aiming to analyze ACKR3 variances as a possible pathomechanism in Ureaplasma-associated neuroinflammation. Non-immortalized human brain microvascular endothelial cells (HBMEC) were exposed to bacterial lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α), and native as well as LPS-primed HBMEC were cultured with Ureaplasma urealyticum serovar 8 (Uu8) and U. parvum serovar 3 (Up3). ACKR3 responses were assessed via qRT-PCR, RNA sequencing, flow cytometry, and immunocytochemistry. Results: LPS, TNF-α, and Ureaplasma spp. influenced ACKR3 expression in HBMEC. LPS and TNF-α significantly induced ACKR3 mRNA expression (p < 0.001, vs. control), whereas Ureaplasma spp. enhanced ACKR3 protein expression in HBMEC (p < 0.01, vs. broth control). Co-stimulation with LPS and either Ureaplasma isolate intensified ACKR3 responses (p < 0.05, vs. LPS). Furthermore, stimulation wielded a differential influence on the receptor's ligands. Conclusions: We introduce an in vitro model of Ureaplasma meningitis. We are able to demonstrate a pro-inflammatory capacity of Ureaplasma spp. in native and, even more so, in LPS-primed HBMEC, underlining their clinical relevance particularly in a setting of co-infection. Furthermore, our data may indicate a novel role for ACKR3, with an impact not limited to auto-inflammatory diseases, but extending to infection-related neuroinflammation as well. AKCR3-induced blood-brain barrier breakdown might constitute a potential common pathomechanism.}, language = {en} } @article{SilwedelHaarmannFehrholzetal.2019, author = {Silwedel, Christine and Haarmann, Axel and Fehrholz, Markus and Claus, Heike and Speer, Christian P. and Glaser, Kirsten}, title = {More than just inflammation: Ureaplasma species induce apoptosis in human brain microvascular endothelial cells}, series = {Journal of Neuroinflammation}, volume = {16}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-019-1413-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200711}, pages = {38}, year = {2019}, abstract = {Background Ureaplasma species (spp.) are commonly regarded as low-virulent commensals but may cause invasive diseases in immunocompromised adults and in neonates, including neonatal meningitis. The interactions of Ureaplasma spp. with host defense mechanisms are poorly understood. This study addressed Ureaplasma-driven cell death, concentrating on apoptosis as well as inflammatory cell death. Methods Human brain microvascular endothelial cells (HBMEC) were exposed to Ureaplasma (U.) urealyticum serovar 8 (Uu8) and U. parvum serovar 3 (Up3). Resulting numbers of dead cells as well as mRNA levels and enzyme activity of key agents in programmed cell death were assessed by flow cytometry, RNA sequencing, and qRT-PCR, respectively. xCELLigence data were used for real-time monitoring of changes in cell adhesion properties. Results Both Ureaplasma isolates induced cell death (p < 0.05, vs. broth). Furthermore, Ureaplasma spp. enhanced mRNA levels for genes in apoptosis, including caspase 3 (Up3 p < 0.05, vs. broth), caspase 7 (p < 0.01), and caspase 9 (Up3 p < 0.01). Caspase 3 activity was increased upon Uu8 exposure (p < 0.01). Vice versa, Ureaplasma isolates downregulated mRNA levels for proteins involved in inflammatory cell death, namely caspase 1 (Uu8 p < 0.01, Up3 p < 0.001), caspase 4 (Uu8 p < 0.05, Up3 p < 0.01), NOD-like receptor pyrin domain-containing 3 (Uu8 p < 0.05), and receptor-interacting protein kinase 3 (p < 0.05). Conclusions By inducing apoptosis in HBMEC as main constituents of the blood-brain barrier, Ureaplasma spp. may provoke barrier breakdown. Simultaneous suppression of inflammatory cell death may additionally attenuate host defense strategies. Ultimate consequence could be invasive and long-term CNS infections by Ureaplasma spp.}, language = {en} } @article{BrehonyTrotterRamsayetal.2014, author = {Brehony, Carina and Trotter, Caronline L. and Ramsay, Mary E. and Chandra, Manosree and Jolley, Keith A. and van der Ende, Arie and Carion, Fran{\c{c}}oise and Berthelsen, Lene and Hoffmann, Steen and Harðard{\´o}ttir, Hj{\"o}rd{\´i}s and Vazques, Julio A. and Murphy, Karen and Toropainen, Maija and Cani{\c{c}}a, Manuela and Ferreira, Eugenia and Diggle, Mathew and Edwards, Giles F. and Taha, Muhamed-Kheir and Stefanelli, Paola and Kriz, Paula and Gray, Steve J. and Fox, Andrew J. and Jacobsson, Susanne and Claus, Heike and Vogel, Ulrich and Tzanakaki, Georgina and Heuberger, Sigrid and Caugant, Dominique A. and Frosch, Matthias and Maiden, Martin C. J.}, title = {Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development}, series = {Clinical and Vaccine Immunology : CVI}, volume = {21}, journal = {Clinical and Vaccine Immunology : CVI}, number = {6}, doi = {10.1128/cvi.00133-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120808}, pages = {847-53}, year = {2014}, abstract = {New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being licensed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from 18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs) by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32 cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and ≥25-year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required for different age groups.}, language = {en} } @article{MoremiClausVogeletal.2017, author = {Moremi, Nyambura and Claus, Heike and Vogel, Ulrich and Mshana, Stephen E.}, title = {Faecal carriage of CTX-M extended-spectrum beta-lactamase-producing Enterobacteriaceae among street children dwelling in Mwanza city, Tanzania}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {9}, doi = {10.1371/journal.pone.0184592}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170331}, pages = {e0184592}, year = {2017}, abstract = {Background Data on ESBL carriage of healthy people including children are scarce especially in developing countries. We analyzed the prevalence and genotypes of ESBL-producing Enterobacteriaceae (EPE) in Tanzanian street children with rare contact to healthcare facilities but significant interactions with the environment, animals and other people. Methodology/ Principle findings Between April and July 2015, stool samples of 107 street children, who live in urban Mwanza were analyzed for EPE. Intestinal carriage of EPE was found in 34 (31.8\%, 95\% CI; 22.7-40.3) children. Of the 36 isolates from 34 children, 30 (83.3\%) were Escherichia coli (E. coli) and six Klebsiella pneumoniae (K. pneumoniae). Out of 36 isolates, 36 (100\%), 35 (97\%), 25 (69\%) and 16 (44\%) were resistant to tetracycline, trimethoprim-sulfamethoxazole, ciprofloxacin and gentamicin, respectively. Beta-lactamase genes and the multilocus sequence types of E. coli and K. pneumoniae were characterized. ESBL gene bla\(_{CTX-M-15}\) was detected in 75\% (27/36) of ESBL isolates. Sequence types (STs) 131, 10, 448 and 617 were the most prevalent in E. coli. Use of local herbs (OR: 3.5, 95\% CI: 1.51-8.08, P = 0.003) and spending day and night on streets (OR: 3.6, 95\% CI: 1.44-8.97, P = 0.005) were independent predictors of ESBL carriage. Conclusions/ Significance We observed a high prevalence of bla\(_{CTX-M-15}\) in EPE collected from street children in Tanzania. Detection of E. coli STs 131, 10, 38 and 648, which have been observed worldwide in animals and people, highlights the need for multidisciplinary approaches to understand the epidemiology and drivers of antimicrobial resistance in low-income countries.}, language = {en} } @article{TahaClausLappannetal.2016, author = {Taha, Muhamed-Kheir and Claus, Heike and Lappann, Martin and Veyrier, Fr{\´e}d{\´e}ric J. and Otto, Andreas and Becher, D{\"o}rte and Deghmane, Ala-Eddine and Frosch, Matthias and Hellenbrand, Wiebke and Hong, Eva and du Ch{\^a}telet, Isabelle Parent and Prior, Karola and Harmsen, Dag and Vogel, Ulrich}, title = {Evolutionary Events Associated with an Outbreak of Meningococcal Disease in Men Who Have Sex with Men}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0154047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179870}, year = {2016}, abstract = {Meningococci spread via respiratory droplets, whereas the closely related gonococci are transmitted sexually. Several outbreaks of invasive meningococcal disease have been reported in Europe and the United States among men who have sex with men (MSM). We recently identified an outbreak of serogroup C meningococcal disease among MSM in Germany and France. In this study, genomic and proteomic techniques were used to analyze the outbreak isolates. In addition, genetically identical urethritis isolates were recovered from France and Germany and included in the analysis. Genome sequencing revealed that the isolates from the outbreak among MSM and from urethritis cases belonged to a clade within clonal complex 11. Proteome analysis showed they expressed nitrite reductase, enabling anaerobic growth as previously described for gonococci. Invasive isolates from MSM, but not urethritis isolates, further expressed functional human factor H binding protein associated with enhanced survival in a newly developed transgenic mouse model expressing human factor H, a complement regulatory protein. In conclusion, our data suggest that urethritis and outbreak isolates followed a joint adaptation route including adaption to the urogenital tract.}, language = {en} } @article{HarrisonClausJiangetal.2013, author = {Harrison, Odile B. and Claus, Heike and Jiang, Ying and Bennett, Julia S. and Bratcher, Holly B. and Jolley, Keith A. and Corton, Craig and Care, Rory and Poolman, Jan T. and Zollinger, Wendell D. and Frasch, Carl E. and Stephens, David S. and Feavers, Ian and Frosch, Matthias and Parkhill, Julian and Vogel, Ulrich and Quail, Michael A. and Bentley, Stephen D. and Maiden, Martin C. J.}, title = {Description and Nomenclature of Neisseria meningitidis Capsule Locus}, series = {Emerging Infectious Diseases}, volume = {19}, journal = {Emerging Infectious Diseases}, number = {4}, doi = {10.3201/eid1904.111799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131703}, pages = {566-573}, year = {2013}, abstract = {Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium. Thirteen capsular polysaccharides have been described, and nuclear magnetic resonance spectroscopy has enabled determination of the structure of capsular polysaccharides responsible for serogroup specificity. Molecular mechanisms involved in N. meningitidis capsule biosynthesis have also been identified, and genes involved in this process and in cell surface translocation are clustered at a single chromosomal locus termed cps. The use of multiple names for some of the genes involved in capsule synthesis, combined with the need for rapid diagnosis of serogroups commonly associated with invasive meningococcal disease, prompted a requirement for a consistent approach to the nomenclature of capsule genes. In this report, a comprehensive description of all N. meningitidis serogroups is provided, along with a proposed nomenclature, which was presented at the 2012 XVIIIth International Pathogenic Neisseria Conference.}, language = {en} } @article{DrayssClausHubertetal.2019, author = {Drayß, Maria and Claus, Heike and Hubert, Kerstin and Thiel, Katrin and Berger, Anja and Sing, Andreas and van der Linden, Mark and Vogel, Ulrich and L{\^a}m, Thi{\^e}n-Tr{\´i}}, title = {Asymptomatic carriage of Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, Group A Streptococcus and Staphylococcus aureus among adults aged 65 years and older}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0212052}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201042}, pages = {e0212052}, year = {2019}, abstract = {Objective The aim of this study was to determine the prevalence of Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, group A Streptococcus (GAS), and Staphylococcus aureus in asymptomatic elderly people and to unravel risk factors leading to colonization. Methods A multi-centre cross-sectional study was conducted including 677 asymptomatic adults aged 65 years or more, living at home or in nursing homes. Study areas were Greater Aachen (North-Rhine-Westphalia) and Wuerzburg (Bavaria), both regions with medium to high population density. Nasal and oropharyngeal swabs as well as questionnaires were collected from October 2012 to May 2013. Statistical analysis included multiple logistic regression models. Results The carriage rate was 1.9\% ([95\%CI: 1.0-3.3\%]; 13/677) for H. influenzae, 0.3\% ([95\%CI: 0-1.1\%]; 2/677) for N. meningitidis and 0\% ([95\% CI: 0-0.5\%]; 0/677) for S. pneumoniae and GAS. Staphylococcus aureus was harboured by 28.5\% of the individuals ([95\% CI: 25.1-32.1\%]; 193/677) and 0.7\% ([95\% CI: 0.2-1.7\%]; 5/677) were positive for methicillin-resistant S. aureus. Among elderly community-dwellers colonization with S. aureus was significantly associated with higher educational level (adjusted OR: 1.905 [95\% CI: 1.248-2.908]; p = 0.003). Among nursing home residents colonization was associated with being married (adjusted OR: 3.367 [1.502-7.546]; p = 0.003). Conclusion The prevalence of N. meningitidis, H. influenzae, S. pneumoniae and GAS was low among older people in Germany. The S. aureus rate was expectedly high, while MRSA was found in less than 1\% of the individuals.}, language = {en} } @article{MoremiClausMshana2016, author = {Moremi, Nyambura and Claus, Heike and Mshana, Stephen E.}, title = {Antimicrobial resistance pattern: a report of microbiological cultures at a tertiary hospital in Tanzania}, series = {BMC Infectious Diseases}, volume = {16}, journal = {BMC Infectious Diseases}, number = {756}, doi = {10.1186/s12879-016-2082-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161185}, year = {2016}, abstract = {Background Antimicrobial resistance has been declared by the World Health Organization as a threat to the public health. The aim of this study was to analyze antimicrobial resistance patterns of the common pathogens occurring at the Bugando Medical Centre (BMC), Mwanza, Tanzania to provide data for antimicrobial stewardship programmes. Methods A total of 3330 microbiological culture results scripts representing non-repetitive specimens reported between June 2013 and May 2015 were retrieved and analyzed for pathogens and their susceptibility patterns using STATA-11 software. Results Out of 3330 specimens, 439 (13.2\%) had positive culture. Staphylococcus aureus (n = 100; 22.8\%), Klebsiella pneumoniae (n = 65; 14.8\%) and Escherichia coli (n = 41; 9.3\%) were the most frequently isolated bacteria. Of 78 Staphylococcus aureus tested, 27 (34.6\%) were found to be methicillin resistant Staphylococcus aureus (MRSA). Rates of resistance of Klebsiella pneumoniae and Escherichia coli isolates to third generation cephalosporins were 38.5\% (25/65) and 29.3\% (12/41) respectively. Staphylococcus aureus and Klesbiella pneumoniae were commonly isolated from bloodstream infections while Escherichia coli and Pseudomonas aeruginosa were the predominant isolates from urinary tract and wounds infections respectively. Of 23 Salmonella species isolated, 22 (95\%) were recovered from the blood. Nine of the 23 Salmonella species isolates (39\%) were found to be resistant to third generation cephalosporins. The resistance rate of gram-negative bacteria to third generation cephalosporins increased from 26.5\% in 2014 to 57.9\% in 2015 (p = 0.004) while the rate of MRSA decreased from 41.2\% in 2013 to 9.5\% in 2015 (p = 0.016). Multidrug-resistant gram-negative isolates were commonly isolated from Intensive Care Units and it was noted that, the majority of invasive infections were due to gram-negative bacteria. Conclusion There is an increase in proportion of gram-negative isolates resistant to third generation cephalosporins. The diversity of potential pathogens resistant to commonly prescribed antibiotics underscores the importance of sustained and standardized antimicrobial resistance surveillance and antibiotic stewardship programmes in developing countries.}, language = {en} } @article{ClausHubertBecheretal.2019, author = {Claus, Heike and Hubert, Kerstin and Becher, D{\"o}rte and Otto, Andreas and Pawlik, Marie-Christin and Lappann, Ines and Strobel, Lea and Vogel, Ulrich and Johswich, Kay}, title = {A homopolymeric adenosine tract in the promoter region of nspA influences factor H-mediated serum resistance in Neisseria meningitidis}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-39231-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200956}, pages = {2736}, year = {2019}, abstract = {Although usually asymptomatically colonizing the human nasopharynx, the Gram-negative bacterium Neisseria meningitidis (meningococcus) can spread to the blood stream and cause invasive disease. For survival in blood, N. meningitidis evades the complement system by expression of a polysaccharide capsule and surface proteins sequestering the complement regulator factor H (fH). Meningococcal strains belonging to the sequence type (ST-) 41/44 clonal complex (cc41/44) cause a major proportion of serogroup B meningococcal disease worldwide, but they are also common in asymptomatic carriers. Proteome analysis comparing cc41/44 isolates from invasive disease versus carriage revealed differential expression levels of the outer membrane protein NspA, which binds fH. Deletion of nspA reduced serum resistance and NspA expression correlated with fH sequestration. Expression levels of NspA depended on the length of a homopolymeric tract in the nspA promoter: A 5-adenosine tract dictated low NspA expression, whereas a 6-adenosine motif guided high NspA expression. Screening German cc41/44 strain collections revealed the 6-adenosine motif in 39\% of disease isolates, but only in 3.4\% of carriage isolates. Thus, high NspA expression is associated with disease, but not strictly required. The 6-adenosine nspA promoter is most common to the cc41/44, but is also found in other hypervirulent clonal complexes.}, language = {en} }