@article{FoehrenbacherKrahfussZapfetal.2021, author = {F{\"o}hrenbacher, Steffen A. and Krahfuss, Mirjam J. and Zapf, Ludwig and Friedrich, Alexandra and Ignat'ev, Nikolai V. and Finze, Maik and Radius, Udo}, title = {Tris(pentafluoroethyl)difluorophosphorane: a versatile fluoride acceptor for transition metal chemistry}, series = {Chemistry Europe}, volume = {27}, journal = {Chemistry Europe}, number = {10}, doi = {10.1002/chem.202004885}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256665}, pages = {3504-3516}, year = {2021}, abstract = {Fluoride abstraction from different types of transition metal fluoride complexes [L\(_n\)MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C\(_2\)F\(_5\))\(_3\)PF\(_2\) to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C\(_2\)F\(_5\))\(_3\)PF\(_3\)]\(^-\)) is reported. (C\(_2\)F\(_5\))\(_3\)PF\(_2\) reacted with trans-[Ni(iPr\(_2\)Im)\(_2\)(Ar\(^F\))F] (iPr2Im=1,3-diisopropylimidazolin-2-ylidene; Ar\(^F\)=C\(_6\)F\(_5\), 1 a; 4-CF\(_3\)-C\(_6\)F\(_4\), 1 b; 4-C\(_6\)F\(_5\)-C\(_6\)F\(_4\), 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr\(_2\)Im)\(_2\)(solv)(Ar\(^F\))]FAP (2 a-c[solv]; solv=Et\(_2\)O, CH\(_2\)Cl\(_2\), THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh\(_3\), solvent coordination was suppressed and the complexes trans-[Ni(iPr\(_2\)Im)\(_2\)(PPh\(_3\))(C\(_6\)F\(_5\))]FAP (trans-2 a[PPh\(_3\)]) and cis-[Ni(iPr\(_2\)Im)\(_2\)(Dipp\(_2\)Im)(C\(_6\)F\(_5\))]FAP (cis-2 a[Dipp\(_2\)Im]) (Dipp\(_2\)Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp\(_2\)Im)CuF] (3) in CH\(_2\)Cl\(_2\) or 1,2-difluorobenzene led to the isolation of [{(Dipp\(_2\)Im)Cu}\(_2\)]\(^2\)\(^+\)2 FAP\(^-\) (4). Subsequent reaction of 4 with PPh\(_3\) and different carbenes resulted in the complexes [(Dipp\(_2\)Im)Cu(LB)]FAP (5 a-e, LB=Lewis base). In the presence of C6Me6, fluoride transfer afforded [(Dipp\(_2\)Im)Cu(C\(_6\)Me\(_6\))]FAP (5 f), which serves as a source of [(Dipp\(_2\)Im)Cu)]\(^+\). Fluoride abstraction of [Cp\(_2\)TiF\(_2\)] (7) resulted in the formation of dinuclear [FCp\(_2\)Ti(μ-F)TiCp\(_2\)F]FAP (8) (Cp=η\(^5\)-C\(_5\)H\(_5\)) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand.}, language = {en} } @article{SchneiderTanzerKrauelDeutschetal.2021, author = {Schneider, Leon N. and Tanzer Krauel, Eva-Maria and Deutsch, Carl and Urbahns, Klaus and Bischof, Tobias and Maibom, Kristina A. M. and Landmann, Johannes and Keppner, Fabian and Kerpen, Christoph and Hailmann, Michael and Zapf, Ludwig and Knuplez, Tanja and Bertermann, R{\"u}diger and Ignat'ev, Nikolai V. and Finze, Maik}, title = {Stable and Storable N(CF\(_{3}\))\(_{2}\) Transfer Reagents}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {42}, doi = {10.1002/chem.202101436}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256890}, pages = {10973-10978}, year = {2021}, abstract = {Fluorinated groups are essential for drug design, agrochemicals, and materials science. The bis(trifluoromethyl)amino group is an example of a stable group that has a high potential. While the number of molecules containing perfluoroalkyl, perfluoroalkoxy, and other fluorinated groups is steadily increasing, examples with the N(CF\(_{3}\))\(_{2}\) group are rare. One reason is that transfer reagents are scarce and metal-based storable reagents are unknown. Herein, a set of Cu\(^{I}\) and Ag\(^{I}\) bis(trifluoromethyl)amido complexes stabilized by N- and P-donor ligands with unprecedented stability are presented. The complexes are stable solids that can even be manipulated in air for a short time. They are bis(trifluoromethyl)amination reagents as shown by nucleophilic substitution and Sandmeyer reactions. In addition to a series of benzylbis(trifluoromethyl)amines, 2-bis(trifluoromethyl)amino acetate was obtained, which, upon hydrolysis, gives the fluorinated amino acid N,N-bis(trifluoromethyl)glycine.}, language = {en} }