@article{RiedererLaux2011, author = {Riederer, Peter and Laux, Gerd}, title = {MAO-inhibitors in Parkinson's Disease}, series = {Experimental Neurobiology}, volume = {20}, journal = {Experimental Neurobiology}, number = {1}, doi = {10.5607/en.2011.20.1.1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140930}, pages = {1-17}, year = {2011}, abstract = {Monoamine oxidase inhibitors (MAO-I) belong to the earliest drugs tried in Parkinson's disease (PD). They have been used with or without levodopa (L-DOPA). Non-selective MAO-I due to their side-effect/adverse reaction profile, like tranylcypromine have limited use in the treatment of depression in PD, while selective, reversible MAO-A inhibitors are recommended due to their easier clinical handling. For the treatment of akinesia and motor fluctuations selective irreversible MAO-B inhibitors selegiline and rasagiline are recommended. They are safe and well tolerated at the recommended daily doses. Their main differences are related to (1) metabolism, (2) interaction with CYP-enzymes and (3) quantitative properties at the molecular biological/genetic level. Rasagiline is more potent in clinical practise and has a hypothesis driven more favourable side effect/adverse reaction profile due to its metabolism to aminoindan. Both selegiline and rasagiline have a neuroprotective and neurorestaurative potential. A head-to head clinical trial would be of utmost interest from both the clinical outcome and a hypothesis-driven point of view. Selegiline is available as tablet and melting tablet for PD and as transdermal selegiline for depression, while rasagiline is marketed as tablet for PD. In general, the clinical use of MAO-I nowadays is underestimated. There should be more efforts to evaluate their clinical potency as antidepressants and antidementive drugs in addition to the final proof of their disease-modifying potential. In line with this are recent innovative developments of MAO-I plus inhibition of acetylcholine esterase for Alzheimer's disease as well as combined MAO-I and iron chelation for PD.}, language = {en} } @article{OberlaenderPletinckxDaehleretal.2011, author = {Oberl{\"a}nder, Uwe and Pletinckx, Katrien and D{\"a}hler, Anja and M{\"u}ller, Nora and Lutz, Manfred and Arzberger, Thomas and Riederer, Peter and Gerlach, Manfred and Koutsilieri, Eleni and Scheller, Carsten}, title = {Neuromelanin is an Immune Stimulator for Dendritic Cells in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69210}, year = {2011}, abstract = {Background: Parkinson's disease (PD) is characterized at the cellular level by a destruction of neuromelanin (NM)-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that antimelanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs), the major cell type for inducing Tand B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results: Murine DCs were treated with NM of substantia nigra (SN) from human subjects or with synthetic dopamine melanin (DAM). DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh). NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-a. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions: NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.}, subject = {Immunstimulation}, language = {en} } @article{BartlScholzHinterbergeretal.2011, author = {Bartl, Jasmin and Scholz, Claus-J{\"u}rgen and Hinterberger, Margareta and Jungwirth, Susanne and Wichart, Ildiko and Rainer, Michael K. and Kneitz, Susanne and Danielczyk, Walter and Tragl, Karl H. and Fischer, Peter and Riederer, Peter and Gr{\"u}nblatt, Edna}, title = {Disorder-specific effects of polymorphisms at opposing ends of the Insulin Degrading Enzymegene}, series = {BMC Medical Genetics}, volume = {12}, journal = {BMC Medical Genetics}, number = {151}, doi = {10.1186/1471-2350-12-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137744}, year = {2011}, abstract = {Background Insulin-degrading enzyme (IDE) is the ubiquitously expressed enzyme responsible for insulin and amyloid beta (Aβ) degradation. IDE gene is located on chromosome region 10q23-q25 and exhibits a well-replicated peak of linkage with Type 2 diabetes mellitus (T2DM). Several genetic association studies examined IDE gene as a susceptibility gene for Alzheimer's disease (AD), however with controversial results. Methods We examined associations of three IDE polymorphisms (IDE2, rs4646953; IDE7, rs2251101 and IDE9, rs1887922) with AD, Aβ42 plasma level and T2DM risk in the longitudinal Vienna Transdanube Aging (VITA) study cohort. Results The upstream polymorphism IDE2 was found to influence AD risk and to trigger the Aβ42 plasma level, whereas the downstream polymorphism IDE7 modified the T2DM risk; no associations were found for the intronic variant IDE9. Conclusions Based on our SNP and haplotype results, we delineate the model that IDE promoter and 3' untranslated region/downstream variation may have different effects on IDE expression, presumably a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility.}, language = {en} } @article{GerlachMaetzlerBroichetal.2011, author = {Gerlach, Manfred and Maetzler, Walter and Broich, Karl and Hampel, Harald and Rems, Lucas and Reum, Torsten and Riederer, Peter and St{\"o}ffler, Albrecht and Streffer, Johannes and Berg, Daniela}, title = {Biomarker candidates of neurodegeneration in Parkinson's disease for the evaluation of disease-modifying therapeutics}, series = {Journal of Neural Transmission}, volume = {119}, journal = {Journal of Neural Transmission}, number = {1}, doi = {10.1007/s00702-011-0682-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133856}, pages = {39-52}, year = {2011}, abstract = {Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson's disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies.}, language = {en} }