@phdthesis{Potabattula2019, author = {Potabattula, Ramya Sri Krishna}, title = {Male aging and obesity effects on sperm methylome and consequences for the next generation}, doi = {10.25972/OPUS-16548}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Besides a growing tendency for delayed parenthood, sedentary lifestyle coupled with overnutrition has dramatically increased worldwide over the last few decades. Epigenetic mechanisms can help us understand the epidemics and heritability of complex traits like obesity to a significant extent. Majority of the research till now has focused on determining the impact of maternal factors on health and disease risk in the offspring(s). This doctoral thesis is focused on deciphering the potential effects of male aging and obesity on sperm methylome, and consequences/transmission via germline to the next generation. In humans, this was assessed in a unique cohort of ~300 sperm samples, collected after in vitro fertilization/intracytoplasmic sperm injection, as well as in conceived fetal cord blood samples of the children. Furthermore, aging effect on sperm samples derived from a bovine cohort was analyzed. The study identified that human male aging significantly increased the DNA methylation levels of the promoter, the upstream core element, the 18S, and the 28S regions of ribosomal DNA (rDNA) in sperm. Prediction models were developed to anticipate an individual's age based on the methylation status of rDNA regions in his sperm. Hypermethylation of alpha satellite and LINE1 repeats in human sperm was also observed with aging. Epimutations, which are aberrantly methylated CpG sites, were significantly higher in sperm of older males compared to the younger ones. These effects on the male germline had a negative impact on embryo quality of the next generation. Consistent with these results, DNA methylation of rDNA regions, bovine alpha satellite, and testis satellite repeats displayed a significant positive correlation with aging sperm samples within the same individual and across different age-grouped bulls. A positive association between human male obesity/body mass index (BMI) and DNA methylation of the imprinted MEG3 gene and the obesity-related HIF3A gene was detected in sperm. These BMI-induced sperm DNA methylation signatures were transmitted to next generation fetal cord blood (FCB) samples in a gender-specific manner. Males, but not female offsprings exhibited a significant positive correlation between father's BMI and FCB DNA methylation in the two above-mentioned amplicons. Additionally, hypomethylation of IGF2 with increased paternal BMI was observed in female FCB samples. Parental allele-specific in-depth methylation analysis of imprinted genes using next generation sequencing technology also revealed significant correlations between paternal factors like age and BMI, and the corresponding father's allele DNA methylation in FCB samples. Deep bisulphite sequencing of imprinted genes in diploid somatic cord blood cells of offspring detected that the levels of DNA methylation signatures largely depended on the underlying genetic variant, i.e. sequence haplotypes. Allele-specific epimutations were observed in PEG1, PEG5, MEG3, H19, and IGF2 amplicons. For the former three genes, the non-imprinted unmethylated allele displayed more epimutations than the imprinted methylated allele. On the other hand, for the latter two genes, the imprinted allele exhibited higher epimutation rate than that of the non-imprinted allele. In summary, the present study proved that male aging and obesity impacts the DNA methylome of repetitive elements and imprinted genes respectively in sperm, and also has considerable consequences on the next generation. Nevertheless, longitudinal follow-up studies are highly encouraged to elucidate if these effects can influence the risk of developing abnormal phenotype in the offspring during adulthood.}, language = {en} } @phdthesis{Ruecker2019, author = {R{\"u}cker, Christoph}, title = {Development of a prevascularized bone implant}, doi = {10.25972/OPUS-17886}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The skeletal system forms the mechanical structure of the body and consists of bone, which is hard connective tissue. The tasks the skeleton and bones take over are of mechanical, metabolic and synthetic nature. Lastly, bones enable the production of blood cells by housing the bone marrow. Bone has a scarless self-healing capacity to a certain degree. Injuries exceeding this capacity caused by trauma, surgical removal of infected or tumoral bone or as a result from treatment-related osteonecrosis, will not heal. Critical size bone defects that will not heal by themselves are still object of comprehensive clinical investigation. The conventional treatments often result in therapies including burdening methods as for example the harvesting of autologous bone material. The aim of this thesis was the creation of a prevascularized bone implant employing minimally invasive methods in order to minimize inconvenience for patients and surgical site morbidity. The basis for the implant was a decellularized, naturally derived vascular scaffold (BioVaSc-TERM®) providing functional vessel structures after reseeding with autologous endothelial cells. The bone compartment was built by the combination of the aforementioned scaffold with synthetic β-tricalcium phosphate. In vitro culture for tissue maturation was performed using bioreactor technology before the testing of the regenerative potential of the implant in large animal experiments in sheep. A tibia defect was treated without the anastomosis of the implant's innate vasculature to the host's circulatory system and in a second study, with anastomosis of the vessel system in a mandibular defect. While the non-anastomosed implant revealed a mostly osteoconductive effect, the implants that were anastomosed achieved formation of bony islands evenly distributed over the defect. In order to prepare preconditions for a rapid approval of an implant making use of this vascularization strategy, the manufacturing of the BioVaSc-TERM® as vascularizing scaffold was adjusted to GMP requirements.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Baur2019, author = {Baur, Florentin Philipp}, title = {Establishment of a 3D tumour model and targeted therapy of BRAF-mutant colorectal cancer}, doi = {10.25972/OPUS-17412}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174129}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Cancer remains after cardiovascular diseases the leading cause of death worldwide and an estimated 8.2 million people died of it in 2012. By 2030, 13 million cancer deaths are expected due to the growth and ageing of the population. Hereof, colorectal cancer (CRC) is the third most common cancer in men and the second in women with a wide geographical variation across the world. Usually, CRC begins as a non-cancerous growth leading to an adenomatous polyp, or adenoma, arising from glandular cells. Since research has brought about better understanding of the mechanisms of cancer development, novel treatments such as targeted therapy have emerged in the past decades. Despite that, up to 95\% of anticancer drugs tested in clinical phase I trials do not attain a market authorisation and hence these high attrition rates remain a key challenge for the pharmaceutical industry, making drug development processes enormously costly and inefficient. Therefore, new preclinical in vitro models which can predict drug responses in vivo more precisely are urgently needed. Tissue engineering not only provides the possibility of creating artificial three-dimensional (3D) in vitro tissues, such as functional organs, but also enables the investigation of drug responses in pathological tissue models, that is, in 3D cancer models which are superior to conventional two-dimensional (2D) cell cultures on petri dishes and can overcome the limitations of animal models, thereby reducing the need for preclinical in vivo models. In this thesis, novel 3D CRC models on the basis of a decellularised intestinal matrix were established. In the first part, it could be shown that the cell line SW480 exhibited different characteristics when grown in a 3D environment from those in conventional 2D culture. While the cells showed a mesenchymal phenotype in 2D culture, they displayed a more pronounced epithelial character in the 3D model. By adding stromal cells (fibroblasts), the cancer cells changed their growth pattern and built tumour-like structures together with the fibroblasts, thereby remodelling the natural mucosal structures of the scaffold. Additionally, the established 3D tumour model was used as a test system for treatment with standard chemotherapeutic 5-fluorouracil (5-FU). The second part of the thesis focused on the establishment of a 3D in vitro test system for targeted therapy. The US Food and Drug Administration has already approved of a number of drugs for targeted therapy of specific types of cancer. For instance, the small molecule vemurafenib (PLX4032, Zelboraf™) which demonstrated impressive response rates of 50-80\% in melanoma patients with a mutation of the rapidly accelerated fibrosarcoma oncogene type B (BRAF) kinase which belongs to the mitogen active protein kinase (MAPK) signalling pathway. However, only 5\% of CRC patients harbouring the same BRAF mutation respond to treatment with vemurafenib. An explanation for this unresponsiveness could be a feedback activation of the upstream EGFR, reactivating the MAPK pathway which sustains a proliferative signalling. To test this hypothesis, the two early passage cell lines HROC24 and HROC87, both presenting the mutation BRAF V600E but differing in other mutations, were used and their drug response to vemurafenib and/or gefitinib was assessed in conventional 2D cell culture and compared to the more advanced 3D model. Under 3D culture conditions, both cell lines showed a reduction of the proliferation rate only in the combination therapy approach. Furthermore, no significant differences between the various treatment approaches and the untreated control regarding apoptosis rate and viability for both cell lines could be found in the 3D tumour model which conferred an enhanced chemoresistance to the cancer cells. Because of the observed unresponsiveness to BRAF inhibition by vemurafenib as can be seen in the clinic for patients with BRAF mutations in CRC, the cell line HROC87 was used for further xenografting experiments and analysis of activation changes in the MAPK signalling pathway. It could be shown that the cells presented a reactivation of Akt in the 3D model when treated with both inhibitors, suggesting an escape mechanism for apoptosis which was not present in cells cultured under conventional 2D conditions. Moreover, the cells exhibited an activation of the hepatocyte growth factor receptor (HGFR, c-Met) in 2D and 3D culture, but this was not detectable in the xenograft model. This shows the limitations of in vivo models. The results suggest another feedback activation loop than that to the EGFR which might not primarily be involved in the resistance mechanism. This reflects the before mentioned high attrition rates in the preclinical drug testing.}, subject = {Dickdarmtumor}, language = {en} } @article{HicklHeintzBuschartTrautweinSchultetal.2019, author = {Hickl, Oskar and Heintz-Buschart, Anna and Trautwein-Schult, Anke and Hercog, Rajna and Bork, Peer and Wilmes, Paul and Becher, D{\"o}rte}, title = {Sample preservation and storage significantly impact taxonomic and functional profiles in metaproteomics studies of the human gut microbiome}, series = {Microorganisms}, volume = {7}, journal = {Microorganisms}, number = {9}, issn = {2076-2607}, doi = {10.3390/microorganisms7090367}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195976}, year = {2019}, abstract = {With the technological advances of the last decade, it is now feasible to analyze microbiome samples, such as human stool specimens, using multi-omic techniques. Given the inherent sample complexity, there exists a need for sample methods which preserve as much information as possible about the biological system at the time of sampling. Here, we analyzed human stool samples preserved and stored using different methods, applying metagenomics as well as metaproteomics. Our results demonstrate that sample preservation and storage have a significant effect on the taxonomic composition of identified proteins. The overall identification rates, as well as the proportion of proteins from Actinobacteria were much higher when samples were flash frozen. Preservation in RNAlater overall led to fewer protein identifications and a considerable increase in the share of Bacteroidetes, as well as Proteobacteria. Additionally, a decrease in the share of metabolism-related proteins and an increase of the relative amount of proteins involved in the processing of genetic information was observed for RNAlater-stored samples. This suggests that great care should be taken in choosing methods for the preservation and storage of microbiome samples, as well as in comparing the results of analyses using different sampling and storage methods. Flash freezing and subsequent storage at -80 °C should be chosen wherever possible.}, language = {en} }