@phdthesis{Pleines2009, author = {Pleines, Irina}, title = {The role of the Rho GTPases Rac1 and Cdc42 for platelet function and formation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48572}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Platelet activation induces cytoskeletal rearrangements involving a change from discoid to spheric shape, secretion, and eventually adhesion and spreading on immobilized ligands. Small GTPases of the Rho family, such as Rac1 and Cdc42, are known to be involved in these processes by facilitating the formation of lamellipodia and filopodia, respectively. This thesis focuses on the role Rac1 and Cdc42 for platelet function and formation from their precursor cells, the megakaryocytes (MKs), using conditional knock-out mice. In the first part of the work, the involvement of Rac1 in the activation of the enzyme phospholipase (PL) C2 in the signaling pathway of the major platelet collagen receptor glycoprotein (GP) VI was investigated. It was found that Rac1 is essential for PLC2 activation independently of tyrosine phosphorylation of the enzyme, resulting in a specific platelet activation defect downstream of GPVI, whereas signaling of other activating receptors remains unaffected. Since Rac1-deficient mice were protected from arterial thrombosis in two different in vivo models, the GTPase might serve as a potential target for the development of new drugs for the treatment and prophylaxis of cardio- and cerebrovascular diseases. The second part of the thesis deals with the first characterization of MK- and platelet-specific Cdc42 knock-out mice. Cdc42-deficient mice displayed mild thrombo-cytopenia and platelet production from mutant MKs was markedly reduced. Unexpectedly, Cdc42-deficient platelets showed increased granule content and release upon activation, leading to accelerated thrombus formation in vitro and in vivo. Furthermore, Cdc42 was not generally required for filopodia formation upon platelet activation. Thus, these results indicate that Cdc42, unlike Rac1, is involved in multiple signaling pathways essential for proper platelet formation and function. Finally, the outcome of combined deletion of Rac1 and Cdc42 was studied. In contrast to single deficiency of either GTPase, platelet production from double-deficient MKs was virtually abrogated, resulting in dramatic macrothrombocytopenia in the animals. Formed platelets were largely non-functional leading to a severe hemostatic defect and defective thrombus formation in double-deficient mice in vivo. These results demonstrate for the first time a functional redundancy of Rac1 and Cdc42 in the hematopoietic system.}, subject = {Thrombose}, language = {en} } @phdthesis{Erro2009, author = {Erro, Alejandro Berna}, title = {Generation and Characterization of Stromal Interaction Molecule 2 (STIM2)-deficient Mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47301}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {An increase in cytosolic Ca2+ levels ([Ca2+]i) is a key event that occurs downstream of many signaling cascades in response to an external stimulus and regulates a wide range of cellular processes, including platelet activation. Eukaryotic cells increase their basal [Ca2+]i allowing extracellular Ca2+ influx into the cell, which involves different mechanisms. Store-operated Ca2+ entry (SOCE) is considered the main mechanism of extracellular Ca2+ influx in electrically non-excitable cells and platelets, and comprises an initial Ca2+ depletion from intracellular Ca2+ stores prior to activation of extracellular Ca2+ influx. Although the close relation between Ca2+ release from intracellular stores and extracellular Ca2+ influx was clear, the nature of the signal that linked both events remained elusive until 2005, when Stromal Interaction Molecule 1 (STIM1) was identified as an endoplasmic reticulum (ER) Ca2+ sensor essential for inositol (1,4,5)-trisphosphate (IP3)-mediated SOCE in vitro. However, the function of its homologue STIM2 in Ca2+ homeostasis was in general unknown. Therefore, mice lacking STIM2 (Stim2-/-) were generated in this work to study initially STIM2 function in platelets and in cells of the immune system. Stim2-/- mice developed normally in size and weight to adulthood and were fertile. However, for unknown reasons, they started to die spontaneously at the age of 8 weeks. Unexpectedly, Stim2-/- mice did not show relevant differences in platelets, revealing that STIM2 function is not essential in these cells. However, STIM2 seems to be involved in mammary gland development during pregnancy and is essential for mammary gland function during lactation. CD4+ T cells lacking STIM2 showed decreased SOCE. Our data suggest that STIM2 has a very specific function in the immune system and is involved in Experimental Autoimmune Encephalomyelitis (EAE) at early stages of the disease progression. Stim2-/- neurons were also defective in SOCE. Surprisingly, our results evidenced that STIM2 participates in mechanisms of neuronal damage after ischemic events in brain. This is the first time that the involvement of SOCE in ischemic neuronal damage has been reported. This finding may serve as a basis for the development of novel neuroprotective agents for the treatment of ischemic stroke, and possibly other neurodegenerative disorders in which disturbances in cellular Ca2+ homeostasis are considered a major pathophysiological component.}, subject = {Calcium-bindende Proteine}, language = {en} } @phdthesis{Bender2009, author = {Bender, Markus}, title = {Studies on platelet cytoskeletal dynamics and receptor regulation in genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48390}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Blutpl{\"a}ttchen werden von Megakaryozyten im Knochenmark in einem Prozess produziert, an dem Aktin beteiligt ist. Aktin-Depolymerisierungsfaktor (ADF) und Cofilin sind Aktin-bindende Proteine, die als entscheidende Regulatoren im Aktinumsatz agieren, indem sie das Schneiden und Depolymerisieren von Filamenten unterst{\"u}tzen. Die Bedeutung von ADF/Cofilin und des Aktinumsatzes in der Bildung von Blutpl{\"a}ttchen ist gegenw{\"a}rtig nicht bekannt. In der vorliegenden Arbeit wurden M{\"a}use untersucht, die eine konstitutive ADF-Defizienz und/oder die eine konditionale n-Cofilin Defizienz (Cre/loxP) aufweisen. Um Cofilin nur in Megakaryozyten und Blutpl{\"a}ttchen auszuschalten, wurden Cofilinfl/fl M{\"a}use mit PF4-Cre M{\"a}usen verpaart. ADF- oder n-Cofilin-defiziente M{\"a}use hatten keinen oder nur einen geringen Ph{\"a}notyp in Blutpl{\"a}ttchen. Eine Defizienz von ADF und n-Cofilin f{\"u}hrte hingegen zu einem beinahe kompletten Verlust der Blutpl{\"a}ttchen, was mit Defekten in der Bildung von Pl{\"a}ttchenzonen in Knochenmark-Megakaryozyten einherging. Weitere Untersuchungen an in vitro und ex vivo kultivierten Megakaryozyten zeigten eine Reduzierung der Bildung von Propl{\"a}ttchen und das Fehlen der typischen Verdickungen der Propl{\"a}ttchen. Diese Daten zeigen redundante aber essentielle Funktionen von ADF und n-Cofilin im terminalen Schritt der Pl{\"a}ttchenbildung in vitro und in vivo, und belegen erstmals eine wichtige Rolle des Aktinumsatzes in diesem Prozess. Im zweiten Teil dieser Dissertation wurden die Mechanismen untersucht, die f{\"u}r die zellul{\"a}re Regulierung des Hauptkollagenrezeptors auf Blutpl{\"a}ttchen, Glykoprotein VI (GPVI), verantwortlich sind. Nach einer Gef{\"a}ßwandverletzung wird subendotheliales Kollagen freigelegt, wodurch GPVI die Aktivierung von Blutpl{\"a}ttchen vermittelt, und damit zur Blutstillung (H{\"a}mostase), aber auch zum Verschluss eines verletzten Gef{\"a}ßes beitragen kann, was letztendlich zu einem Myokardinfarkt oder einem Schlaganfall f{\"u}hren kann. Deshalb ist GPVI ein attraktives Zielprotein f{\"u}r eine anti-thrombotische Therapie, insbesondere weil fr{\"u}here Studien gezeigt haben, dass anti-GPVI Antik{\"o}rper eine irreversible Herunterregulierung des Rezeptors auf zirkulierenden Blutpl{\"a}ttchen mittels Internalisierung und Abspaltung induzieren. Es wird vermutet, dass Metalloproteinasen der ADAM (a disintegrin and metalloproteinase domain) - Familie das Abspalten vermitteln, jedoch fehlt in vivo der Beweis daf{\"u}r. Um die Mechanismen des Abspaltungsprozesses des GPVI Rezeptors in vivo besser verstehen zu k{\"o}nnen, wurden zwei Mauslinien, GPVI- und konditionale ADAM10-defiziente M{\"a}use, generiert und zus{\"a}tzlich sogenannte „low TACE (TNFalpha converting enzyme)" M{\"a}use analysiert. Es konnte gezeigt werden, dass GPVI in vitro von ADAM10 oder TACE in Abh{\"a}ngigkeit der Signalwege, die zum Abspalten des Rezeptors f{\"u}hren, geschnitten werden kann. Dar{\"u}berhinaus wurde GPVI in vivo nach Antik{\"o}rperverabreichung in ADAM10-defizienten M{\"a}usen und „low TACE" M{\"a}usen herunterreguliert, was vermuten l{\"a}sst, dass entweder beide Metalloproteinasen an diesem Prozess beteiligt sind oder noch eine zus{\"a}tzliche Metalloproteinase f{\"u}r die GPVI Regulation in vivo verantwortlich ist.}, subject = {Zellskelett}, language = {en} } @phdthesis{May2011, author = {May, Frauke}, title = {The role of the (hem)ITAM-coupled receptors C-type lectin-like receptor 2 (CLEC-2) and Glycoprotein (GP) VI for platelet function: in vitro and in vivo studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65383}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Thrombozytenaktivierung und -adh{\"a}sion sowie die nachfolgende Thrombusbildung ist ein essentieller Prozess in der prim{\"a}ren H{\"a}mostase, der aber auch irreversible Gef{\"a}ßverschl{\"u}sse und damit Herzinfarkt oder Schlaganfall verursachen kann. Erst k{\"u}rzlich wurde beschrieben, dass der C-type lectin-like receptor 2 (CLEC-2) auf der Thrombozytenoberfl{\"a}che exprimiert wird, jedoch wurde f{\"u}r diesen Rezeptor noch keine Funktion in den Prozessen der H{\"a}mostase und Thrombose gezeigt. In der vorliegenden Arbeit wurde die Rolle von CLEC-2 in der Thrombozytenfunktion und Thrombusbildung im Mausmodel untersucht. In dem ersten Teil dieser Arbeit konnte gezeigt werden, dass die Behandlung von M{\"a}usen mit dem neu generierten monoklonalen Antik{\"o}rper INU1, der gegen murines CLEC-2 gerichtet ist, zu dem vollst{\"a}ndigen und hochspezifischen Verlust des Rezeptors in zirkulierenden Thrombozyten f{\"u}hrte, ein Prozess, der als „Immundepletion" bezeichnet wird. Die CLEC-2-defizienten Thrombozyten waren nicht mehr durch den CLEC-2-spezifischen Agonisten Rhodozytin aktivierbar, w{\"a}hrend die Aktivierung durch alle anderen getesteten Agonisten nicht beeintr{\"a}chtigt war. Dieser selektive Defekt f{\"u}hrte unter Flussbedingungen ex vivo zu stark verminderter Aggregatbildung der Thrombozyten. Außerdem zeigten in vivo-Thrombosestudien, dass die gebildeten Thromben instabil waren und vermehrt embolisierten. Infolgedessen war die CLEC-2 Defizienz mit einem deutlichen Schutz vor arterieller Thrombose verbunden. Außerdem ließ die in INU1-behandelten M{\"a}usen beobachtete variable Verl{\"a}ngerung der Blutungszeit auf einen moderaten h{\"a}mostatischen Defekt schließen. Diese Ergebnisse zeigen zum ersten Mal, dass CLEC-2 in vitro und in vivo signifikant zur Thrombusstabilit{\"a}t beitr{\"a}gt und eine essentielle Rolle in der H{\"a}mostase und arteriellen Thrombose spielt. Daher stellt CLEC-2 eine potentiell neue antithrombotische Zielstruktur dar, die in vivo inaktiviert werden kann. Diese in vivo-Herabregulierung von Thrombozytenoberfl{\"a}chenrezeptoren k{\"o}nnte einen vielversprechenden Ansatz f{\"u}r zuk{\"u}nftige antithrombotische Therapien darstellen. Der zweite Teil dieser Arbeit behandelte den Effekt einer Doppelimmundepletion der immunoreceptor tyrosine-based activation motiv (ITAM)- und hemITAM-gekoppelten Rezeptoren Glykoprotein (GP) VI und CLEC-2 auf H{\"a}mostase und Thrombose mittels einer Kombination der GPVI- beziehungsweise CLEC-2-spezifischen Antik{\"o}rper JAQ1 und INU1. Eine Einzeldepletion von GPVI oder CLEC-2 in vivo beeintr{\"a}chtigte nicht die Expression und Funktion des jeweils anderen Rezeptors. Eine gleichzeitige Behandlung mit beiden Antik{\"o}rpern f{\"u}hrte jedoch zu dem nachhaltigen Verlust der GPVI- und CLEC-2-vermittelten Signale in Thrombozyten, w{\"a}hrend andere Signalwege nicht betroffen waren. Im Gegensatz zu den Einzeldefizienzen, wiesen die GPVI/CLEC-2 doppeldefizienten M{\"a}use einen schwerwiegenden Blutungsph{\"a}notyp auf. Außerdem f{\"u}hrte die Behandlung zu einer starken Beeintr{\"a}chtigung der arteriellen Thrombusbildung, die die Effekte der Einzeldefizienzen weit {\"u}bertraf. Von Bedeutung ist auch, dass gleiche Ergebnisse in Gp6-/- M{\"a}usen gefunden wurden, die mittels INU1-Behandlung CLEC-2-depletiert wurden. Dies veranschaulicht, dass der Blutungsph{\"a}notyp nicht durch Sekund{\"a}reffekte der kombinierten Antik{\"o}rperbehandlung hervorgerufen wurde. Diese Daten deuten darauf hin, dass GPVI und CLEC-2 sowohl unabh{\"a}ngig voneinander als auch gleichzeitig in vivo von der Thrombozytenoberfl{\"a}che herabreguliert werden k{\"o}nnen und lassen unerwartete redundante Funktionen der beiden Rezeptoren in H{\"a}mostase und Thrombose erkennen. Da beide Rezeptoren, GPVI und CLEC-2, als neue antithrombotische Zielstrukturen diskutiert werden, k{\"o}nnten diese Ergebnisse wichtige Auswirkungen auf die Entwicklung von anti-GPVI oder anti-CLEC-2-basierenden Antithrombotika haben.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Wangorsch2013, author = {Wangorsch, Gaby}, title = {Mathematical modeling of cellular signal transduction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87746}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {A subtly regulated and controlled course of cellular processes is essential for the healthy functioning not only of single cells, but also of organs being constituted thereof. In return, this entails the proper functioning of the whole organism. This implies a complex intra- and inter-cellular communication and signal processing that require equally multi-faceted methods to describe and investigate the underlying processes. Within the scope of this thesis, mathematical modeling of cellular signaling finds its application in the analysis of cellular processes and signaling cascades in different organisms. ...}, subject = {Mathematische Modellierung}, language = {en} } @phdthesis{Hofmann2013, author = {Hofmann, Sebastian}, title = {Studies on the function and regulation of CD84, GPVI and Orai2 in genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87949}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Platelet activation and aggregation at sites of vascular injury are essential processes to limit blood loss but they also contribute to arterial thrombosis, which can lead to myocardial infarction and stroke. Stable thrombus formation requires a series of events involving platelet receptors which contribute to adhesion, activation and aggregation of platelets. Regulation of receptor expression by (metallo-)proteinases has been described for several platelet receptors, but the molecular mechanisms are ill-defined. The signaling lymphocyte activation molecule (SLAM) family member CD84 is expressed in immune cells and platelets, however its role in platelet physiology was unclear. In this thesis, CD84 deficient mice were generated and analyzed. In well established in vitro and in vivo assays testing platelet function and thrombus formation, CD84 deficient mice displayed phenotypes indistinguishable from wild-type controls. It was concluded that CD84 in platelets does not function as modulator of thrombus formation, but rather has other functions. In line with this, in the second part of this thesis, a novel regulation mechanism for platelet CD84 was discovered and elucidated. Upon platelet activation, the N-terminus of CD84 was found to be cleaved exclusively by the a disintegrin and metalloproteinase 10 (ADAM10), whereas the intracellular part was cleaved by calpain. In addition, regulation of the platelet activating collagen receptor glycoprotein VI (GPVI) was studied and it was shown that GPVI is in contrast to CD84 differentially regulated by ADAM10 and ADAM17. A novel role of CD84 under pathophysiological conditions was revealed as CD84 deficient mice were protected from ischemic stroke in the model of transient middle cerebral artery occlusion and this protection was based on the lack of CD84 in T cells. Ca2+ is an essential second messenger that facilitates activation of platelets and diverse functions in different eukaryotic cell types. Store-operated Ca2+ entry (SOCE) represents the major mechanism leading to rise in intracellular Ca2+ concentration in non-excitable cells. The Ca2+ sensor STIM1 (stromal interaction molecule 1) and the SOC channel subunit protein Orai1 are established mediators of SOCE in platelets. STIM2 is the major STIM isoform in neurons, but the role of the SOC channel subunit protein Orai2 in platelets and neurons has remained elusive. In the third part of this thesis, Orai2 deficient mice were generated and analyzed. Orai2 was dispensable for platelet function, however, Orai2 deficient mice were protected from ischemic neurodegeneration and this phenotype was attributed to defective SOCE in neurons.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Chen2014, author = {Chen, Wenchun}, title = {Studies on the role of calcium channels and the kinase domain of transient receptor potential melastatin-like 7 (TRPM7) in platelet function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103719}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Platelet activation and aggregation are essential processes for the sealing of injured vessel walls and preventing blood loss. Under pathological conditions, however, platelet aggregation can lead to uncontrolled thrombus formation, resulting in irreversible vessel occlusion. Therefore, precise regulation of platelet activation is required to ensure efficient platelet plug formation and wound sealing but also to prevent uncontrolled thrombus formation. Rapid elevations in the intracellular levels of cations are a core signaling event during platelet activation. In this thesis, the roles of Ca2+ and Mg2+ channels in the regulation of platelet function were investigated. Orai1, the major store-operated calcium (SOC) channel in platelets, is not only vital for diverse signaling pathways, but may also regulate receptor-operated calcium entry (ROCE). The coupling between the Orai1 signalosome and canonical transient receptor potential channel (TRPC) isoforms has been suggested as an essential step in the activation of store-operated calcium entry (SOCE) and ROCE in human platelets. However, the functional significance of the biochemical interaction between Orai and TRPC isoforms still remains to be answered. In the first part of this thesis, the functional crosstalk between Orai1 and TRPC6 was addressed. Orai1-mediated SOCE was found to enhance the activity of phospholipases (PL) C and D, to increase diacylglycerol (DAG) production and finally to regulate TRPC6-mediated ROCE via DAG, indicating that the regulation of TRPC6 channel activity seems to be independent of the physical interaction with Orai1. Furthermore, Orai1 and TRPC6 double deficiency led to a reduced Ca2+ store content and basal cytoplasmic Ca2+ concentrations, but surprisingly also enhanced ATP secretion, which may enhance Ca2+ influx via P2X1 and compensate for the severe Ca2+ deficits seen in double mutant platelets. In addition, Orai1 and TRPC6 were not essential for G protein-coupled receptor (GPCR)-mediated platelet activation, aggregation and thrombus formation. Transient receptor potential melastatin-like 7 (TRPM7) contains a cytosolic serine/threonine protein kinase. To date, a few in vitro substrates of the TRPM7 kinase have been identified, however, the physiological role of the kinase remains unknown. In the second part of this thesis, mice with a point mutation which blocks the catalytic activity of the TRPM7 kinase (Trpm7KI) were used to study the role of the TRPM7 kinase in platelet function. In Trpm7KI platelets phosphatidylinositol-4,5-bisphosphate (PIP2) metabolism and Ca2+ mobilization were severely impaired upon glycoprotein (GP) VI activation, indicating that the TRPM7 kinase regulates PLC function. This signaling defect in Trpm7KI platelets resulted in impaired aggregate formation under flow and protected animals from arterial thrombosis and ischemic brain infarction. Altogether, these results highlight the kinase domain of TRPM7 as a pivotal signaling moiety implicated in the pathogenesis of thrombosis and cerebrovascular events.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Voegtle2014, author = {V{\"o}gtle, Timo}, title = {Studies on receptor signaling and regulation in platelets and T cells from genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Receptors with tyrosine-based signaling motifs control essential functions of hematopoietic cells, including lymphocytes and platelets. Downstream of the platelet receptor glycoprotein (GP) VI and the T cell receptor (TCR) the immunoreceptor tyrosine-based activation motif (ITAM) initiates a signaling cascade that involves kinases, adapter and effector proteins and finally leads to cellular activation. This thesis summarizes the results of three studies investigating different aspects of receptor signaling and regulation in platelets and T cells. In the first part, the impact of constitutive Ca2+ influx on TCR signaling and T cell physiology was investigated using a transgenic mouse line with a mutation in the Ca2+ sensor stromal interaction molecule 1 (STIM1). The elevated cytoplasmic Ca2+ level resulted in an altered phosphorylation pattern of the key enzyme phospholipase (PL) Cγ1 in response to TCR stimulation, but without affecting its enzymatic activity. Withdrawal of extracellular Ca2+ or inhibition of the phosphatase calcineurin restored the normal phosphorylation pattern. In addition, there was a decrease in the release of Th2-type cytokines interleukin 4, 5 and 13 upon stimulation in vitro. The second part of the thesis deals with the role of the adapter protein growth factor receptor-bound protein 2 (Grb2) in platelets using a megakaryocyte/platelet-specific knockout mouse line. Loss of Grb2 severely impaired signaling of GPVI and C-type lectin-like receptor 2 (CLEC-2), a related hemITAM receptor. This was attributed to defective stabilization of the linker for activation of T cells (LAT) signalosome and resulted in reduced adhesion, aggregation, Ca2+ mobilization and procoagulant activity downstream of (hem)ITAM-coupled receptors in vitro. In contrast, the signaling pathways of G protein-coupled receptors (GPCRs) and the integrin αIIbβ3, which do not utilize the LAT signalosome, were unaffected. In vivo, the defective (hem)ITAM signaling caused prolonged bleeding times, however, thrombus formation was only affected under conditions where GPCR signaling was impaired (upon acetylsalicylic acid treatment). These results establish Grb2 as an important adapter protein in the propagation of GPVI- and CLEC-2-induced signals. Finally, the proteolytic regulation of the immunoreceptor tyrosine-based switch motif (ITSM)-bearing receptor CD84 in platelets was investigated. This study demonstrated that in mice CD84 is cleaved by two distinct and independent proteolytic mechanisms upon platelet activation: shedding of the extracellular part, which is exclusively mediated by a disintegrin and metalloproteinase (ADAM) 10 and cleavage of the intracellular C-terminus by the protease calpain. Finally, the analysis of soluble CD84 levels in the plasma of transgenic mice revealed that shedding of CD84 by ADAM10 occurs constitutively in vivo.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Thielmann2014, author = {Thielmann, Ina}, title = {Function and regulation of phospholipase D in blood platelets: in vitro and in vivo studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Summary Platelet activation and aggregation are crucial for primary hemostasis but can also result in occlusive thrombus formation. Agonist induced platelet activation involves different signaling pathways leading to the activation of phospholipases (PL) which produce second messengers. While the role of PLCs in platelet activation is well established, less is known about the relevance of PLDs. In the current study, the function and regulation of PLD in platelets was investigated using genetic and pharmacological approaches. In the first part of this thesis, adhesion, activation and aggregation of platelets from mice lacking PLD2 or both PLD1 and PLD2 were analyzed in vitro and in vivo. While the absence of PLD2 resulted in slightly reduced PLD activity in platelets, it had no detectable effect on the platelet function in vitro and in vivo. However, the combined deficiency of both PLD isoforms resulted in defective alpha-granule release and protection in a model of ferric chloride induced arteriolar thrombosis, effects that were not observed in mice lacking only one PLD isoform. These results revealed, for the first time, redundant roles of PLD1 and PLD2 in platelet alpha-granule secretion and indicate that this may be relevant for pathological thrombus formation. Thus, PLD might represent a promising target for antithrombotic therapy. Thus, this hypothesis was tested more directly in the second part of this thesis. The effects of pharmacological inhibition of PLD activity on hemostasis, thrombosis and thrombo-inflammatory brain infarction in mice were assessed. Treatment of platelets with the reversible, small molecule PLD inhibitor 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI) led to a specific blockade of PLD activity that was associated with reduced -granule release and integrin activation. Mice that received FIPI at a dose of 3 mg/kg displayed reduced occlusive thrombus formation upon chemical injury of carotid arteries or mesenterial arterioles. Similarly, FIPI-treated mice had smaller infarct sizes and significantly better motor and neurological function 24 hours after transient middle cerebral artery occlusion. This protective effect was not associated with major intracerebral hemorrhage or prolonged tail bleeding times. Thus, pharmacological PLD inhibition might represent a safe therapeutic strategy to prevent arterial thrombosis or ischemic stroke. After revealing a central role for PLD in thrombo-inflammation, the regulation of PLD activity in platelets was analyzed in the last part of the thesis. Up to date, most studies made use of inhibitors potentially exerting off-target effects and consequently PLD regulation is discussed controversially. Therefore, PLD activity in mice genetically lacking potential modulators of PLD activity was determined to address these controversies. These studies revealed that PLD is tightly regulated during initial platelet activation. While integrin outside-in signaling and Gi signaling was dispensable for PLD activation, it was found that PLC dependent pathways were relevant for the regulation of PLD enzyme activity.}, subject = {Phospholipase D}, language = {en} } @phdthesis{Morowski2014, author = {Morowski, Martina}, title = {Relevance of platelet count and ITAM-signalling pathway in murine models of haemostasis, thrombosis and thrombo-inflammation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Platelets are important players in haemostasis and their activation is essential to limit post-traumatic blood loss upon vessel injury. On the other hand, pathological platelet activation may lead to thrombosis resulting in myocardial infarction and stroke. Platelet activation and subsequent thrombus formation are, therefore, tightly regulated and require a well-defined interplay of platelet surface receptors, intracellular signalling molecules, cytoskeletal rearrangements and the activation of the coagulation cascade. In vivo thrombosis and haemostasis models mimic thrombus formation at sites of vascular lesions and are frequently used to assess thrombotic and haemostatic functions of platelets. In this dissertation, different in vivo models were used in mice to address the question at what level a reduced platelet count (PC) compromises stable thrombus formation. To study this, mice were rendered thrombocytopenic by low-dose anti-GPIbα antibody treatment and subjected to a tail bleeding time assay as well as to four different in vivo thrombosis models. Haemostasis and occlusive thrombus formation in small vessels were only mildly affected even at severe reductions of the PC. In contrast, occlusive thrombus formation in larger arteries required higher PCs demonstrating that considerable differences in the sensitivity for PC reductions exist between these models. In a second part of this study, mice were rendered thrombocytopenic by injection of high-dose anti-GPIbα antibody which led to the complete loss of all platelets from the circulation for several days. During recovery from thrombocytopenia, the newly generated platelet population was characterised and revealed a defect in immunoreceptor tyrosine-based activation motif (ITAM)-signalling. This defect translated into impaired arterial thrombus formation. To further investigate ITAM-signalling in vivo, genetically modified mice were analysed which display a positive or negative regulation of platelet ITAM-signalling in vitro. Whereas mice lacking the adapter Grb2 in platelets showed a delayed thrombus formation in vivo after acetylsalicylic acid treatment, Clp36ΔLIM bone marrow chimeric mice and SLAP/SLAP2-deficient mice displayed pro-thrombotic properties in vivo. Finally, mice lacking the adapter protein EFhd2 were analysed in vitro and in vivo. However, EFhd2-deficient platelets showed only a minor increase in the procoagulant activity compared to control.}, subject = {Thrombozyt}, language = {en} }