@phdthesis{Adhikari2024, author = {Adhikari, Bikash}, title = {Targeted degradation of Myc-interacting oncoproteins}, doi = {10.25972/OPUS-31732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The hallmark oncoprotein Myc is a major driver of tumorigenesis in various human cancer entities. However, Myc's structural features make it challenging to develop small molecules against it. A promising strategy to indirectly inhibit the function of Myc is by targeting its interactors. Many Myc-interacting proteins have reported scaffolding functions which are difficult to target using conventional occupancy- driven inhibitors. Thus, in this thesis, the proteolysis targeting chimera (PROTAC) approach was used to target two oncoproteins interacting with Myc which promote the oncogenicity of Myc, Aurora-A and WDR5. PROTACs are bifunctional small molecules that bind to the target protein with one ligand and recruit a cellular E3- ligase with the other ligand to induce target degradation via the ubiquitin- proteasome system. So far, the most widely used E3-ligases for PROTAC development are Cereblon (CRBN) and von Hippel-Lindau tumor suppressor (VHL). Furthermore, there are cases of incompatibility between some E3-ligases and proteins to bring about degradation. Hence there is a need to explore new E3- ligases and a demand for a tool to predict degradative E3-ligases for the target protein in the PROTAC field. In the first part, a highly specific mitotic kinase Aurora-A degrader, JB170, was developed. This compound utilized Aurora-A inhibitor alisertib as the target ligand and thalidomide as the E3-ligase CRBN harness. The specificity of JB170 and the ternary complex formation was supported by the interactions between Aurora-A and CRBN. The PROTAC-mediated degradation of Aurora-A induced a distinct S- phase defect rather than mitotic arrest, shown by its catalytic inhibition. The finding demonstrates that Aurora-A has a non-catalytic role in the S-phase. Furthermore, the degradation of Aurora-A led to apoptosis in various cancer cell lines. In the second part, two different series of WDR5 PROTACs based on two protein- protein inhibitors of WDR5 were evaluated. The most efficient degraders from both series recruited VHL as a E3-ligase and showed partial degradation of WDR5. In addition, the degradation efficiency of the PROTACs was significantly affected by the linker nature and length, highlighting the importance of linker length and composition in PROTAC design. The degraders showed modest proliferation defects at best in cancer cell lines. However, overexpression of VHL increased the degradation efficiency and the antiproliferative effect of the PROTACs. In the last part, a rapamycin-based assay was developed to predict the degradative E3-ligase for a target. The assay was validated using the WDR5/VHL and Aurora- A/CRBN pairs. The result that WDR5 is degraded by VHL but not CRBN and Aurora-A is degraded by CRBN, matches observations made with PROTACs. This technique will be used in the future to find effective tissue-specific and essential E3-ligases for targeted degradation of oncoproteins using PROTACs. Collectively, the work presented here provides a strategy to improve PROTAC development and a starting point for developing Aurora-A and WDR5 PROTACs for cancer therapy.}, subject = {Degradation}, language = {en} } @phdthesis{Bakirci2024, author = {Bakirci, Ezgi}, title = {Development of \(In\) \(vitro\) Models for Tissue Engineering Applications Using a High-Resolution 3D Printing Technology}, doi = {10.25972/OPUS-25164}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251645}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In vitro models mimic the tissue-specific anatomy and play essential roles in personalized medicine and disease treatments. As a sophisticated manufacturing technology, 3D printing overcomes the limitations of traditional technologies and provides an excellent potential for developing in vitro models to mimic native tissue. This thesis aims to investigate the potential of a high-resolution 3D printing technology, melt electrowriting (MEW), for fabricating in vitro models. MEW has a distinct capacity for depositing micron size fibers with a defined design. In this thesis, three approaches were used, including 1) extending the MEW polymer library for different biomedical applications, 2) developing in vitro models for evaluation of cell growth and migration toward the different matrices, and 3) studying the effect of scaffold designs and biochemical cues of microenvironments on cells. First, we introduce the MEW processability of (AB)n and (ABAC)n segmented copolymers, which have thermally reversible network formulation based on physical crosslinks. Bisurea segments are combined with hydrophobic poly(dimethylsiloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments to form the (AB)n segmented copolymers. (ABAC)n segmented copolymers contain all three segments: in addition to bisurea, both hydrophobic and hydrophilic segments are available in the same polymer chain, resulting in tunable mechanical and biological behaviors. MEW copolymers either support cells attachment or dissolve without cytotoxic side effects when in contact with the polymers at lower concentrations, indicating that this copolymer class has potential in biological applications. The unique biological and surface properties, transparency, adjustable hydrophilicity of these copolymers could be beneficial in several in vitro models. The second manuscript addresses the design and development of a melt electrowritten competitive 3D radial migration device. The approach differs from most of the previous literature, as MEW is not used here to produce cell invasive scaffolds but to fabricate an in vitro device. The device is utilized to systematically determine the matrix which promotes cell migration and growth of glioblastoma cells. The glioblastoma cell migration is tested on four different Matrigel concentrations using a melt electrowritten radial device. The glioblastoma U87 cell growth and migration increase at Matrigel concentrations 6 and 8 mg mL-1 In the development of this radial device, the accuracy, and precision of melt electrowritten circular shapes were investigated. The results show that the printing speed and design diameter are essential parameters for the accuracy of printed constructs. It is the first instance where MEW is used for the production of in vitro devices. The influence of biochemical cues and scaffold designs on astrocytes and glioblastoma is investigated in the last manuscript. A fiber comprising the box and triangle-shaped pores within MEW scaffolds are modified with biochemical cues, including RGD and IKVAV peptides using a reactive NCO-sP(EO-stat-PO) macromer. The results show that astrocytes and glioblastoma cells exhibit different phenotypes on scaffold designs and peptide-coated scaffolds.}, subject = {3D-Druck}, language = {en} } @phdthesis{Glueck2024, author = {Gl{\"u}ck, Valentina}, title = {Habitual avoidance in trait anxiety and anxiety disorders}, doi = {10.25972/OPUS-36022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360227}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Maladaptive avoidance behaviors can contribute to the maintenance of fear, anxiety, and anxiety disorders. It has been proposed that, throughout anxiety disorder progression, extensively repeated avoidance may become a habit (i.e., habitual avoidance) instead of being controlled by internal threat-related goals (i.e., goal-directed avoidance). However, the process of the acquisition of habitual avoidance in anxiety disorders is not yet well understood. Accordingly, the current thesis aimed to investigate experimentally whether trait anxiety and anxiety disorders are associated with an increased shift from goal-directed to habitual avoidance. The aim of Study 1 was to develop an experimental operationalization of maladaptive habitual avoidance. To this end, we adapted a commonly used action control task, the outcome devaluation paradigm. In this task, habitual avoidance was operationalized as persistent responses after extensive training to avoid an unpleasant stimulus when the aversive outcome was devalued, i.e., when individuals knew the aversive outcome could not occur anymore. We included indicators for costly and low-cost habitual avoidance, whereby habitual avoidance was associated with a monetary cost, while low-cost habitual avoidance was not associated with monetary costs. In Experiment 1 of Study 1, a pronounced costly and non-costly outcome devaluation effect was observed. However, this result may have partly resulted from trial-and-error learning or a better-safe-than-sorry strategy since not instructions about the stimulus-response-outcome contingencies after the outcome devaluation procedure had been provided to the participants. In Experiment 2 of Study 1, instructions on these stimulus-response-outcome contingencies were included to prevent the potential confounders. As a result, we observed no indicators for costly habitual avoidance, but evidence for low-cost habitual avoidance, potentially because competing goal-directed responses could easily be implemented and inhibited costly habitual avoidance tendencies. In Study 2, the strength of habitual avoidance acquisition was compared between participants with and without anxiety disorders, using the experimental task of Experiment 1 in Study 1. The results indicated that costly and low-cost habitual avoidance was not more pronounced in participants with anxiety disorders than in the healthy control group. However, in an exploratory subgroup comparison, panic disorder predicted more substantial habitual avoidance acquisition than social anxiety disorder. In Study 3, we investigated whether trait anxiety as a risk factor for anxiety disorders is associated with a specific increased shift from goal-directed to habitual avoidance and approach. The task from the Experiment 1 of Study 1 was adapted to include parallel versions for operationalizing habitual avoidance and habitual approach responses. Using a within-subjects design, the individuals - pre-screened for high and low trait anxiety - took part in the approach and the avoidance outcome devaluation task version. The results suggested stronger non-costly habitual responses in more highly trait-anxious individuals independent of the task version, and suggested a tendency towards an impact of trait anxiety on costly habitual approach rather than on costly habitual avoidance. In summary, individuals with high trait anxiety or anxiety disorders did not develop habitual avoidance more readily than individuals with low trait anxiety or without anxiety disorders. Therefore, this thesis does not support the assumption that an increased tendency to acquire habitual avoidance contributes to persistent maladaptive avoidance in anxiety disorders. The thesis also contributes to the discourse on the validity of outcome devaluation studies in general by highlighting the impact of task features, such as the instructions after the outcome devaluation procedure or the task difficulty in the test phase, on the experimental results. Such validity issues may partly explain the heterogeneity of findings in research with the outcome devaluation paradigm. We suggest ways towards more valid operationalizations of habitual avoidance in future studies.}, subject = {Gewohnheit}, language = {en} } @phdthesis{Dekant2024, author = {Dekant, Raphael H.}, title = {Species-differences in the \(in\) \(vitro\) biotransformation of trifluoroethene (HFO-1123)}, doi = {10.25972/OPUS-31403}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-314035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {1,1,2-trifluoroethene (HFO-1123) is intended for use as a refrigerant. Inhalation studies on HFO-1123 in rats suggested a low potential for toxicity, with no-observed-adverse-effect levels greater then 20,000 ppm. However, single inhalation exposure of Goettingen Minipigs and New Zealand White Rabbits resulted in mortality. It was assumed that conjugation of HFO-1123 with glutathione, via glutathione S-transferase, gives rise to S-(1,1,2-trifluoroethyl)-L-glutathione (1123-GSH), which is then transformed to the corresponding cysteine S-conjugate (S-(1,1,2-trifluoroethyl)-L-cysteine, 1123-CYS). Subsequent beta-lyase mediated cleavage of 1123-CYS may result in monofluoroacetic acid, a potent inhibitor of aconitase. Species-differences in 1123-GSH formation and 1123-CYS cleavage to MFA may explain species-differences in HFO-1123 toxicity. This study was designed to test the hypothesis, that GSH-dependent biotransformation and subsequent beta-lyase mediated formation of monofluoroacetic acid, a potent inhibitor of aconitase in the citric acid cycle, may play a key role in HFO-1123 toxicity and to evaluate if species-differences in the extent of MFA formation may account for the species-differences in HFO-1123 toxicity. The overall objective was to determine species-differences in HFO-1123 biotransformation in susceptible vs. less susceptible species and humans as a basis for human risk assessment. To this end, in vitro biotransformation of HFO-1123 and 1123-CYS was investigated in renal and hepatic subcellular fractions of mice, rats, humans, Goettingen Minipigs and NZW Rabbits. Furthermore, cytotoxicity and metabolism of 1123-CYS was assessed in cultured renal epithelial cells. Enzyme kinetic parameters for beta-lyase mediated cleavage of 1123-CYS in renal and hepatic cytosolic fractions were determined, and 19F-NMR was used to identify fluorine containing metabolites arising from 1123-CYS cleavage. Quantification of 1123-GSH formation in hepatic S9 fractions after incubation with HFO-1123 was performed by LC-MS/MS and hepatic metabolism of HFO-1123 was monitored by 19F-NMR. Rates of 1123-GSH formation were increased in rat, mouse and NZW Rabbit compared to human and Goettingen hepatic S9, indicating increased GSH dependent biotransformation in rats, mouse and NZW Rabbits. NZW Rabbit hepatic S9 exhibited increased 1123-GSH formation in the presence compared to the absence of acivicin, a specific gamma-GT inhibitor. This indicates increased gamma-GT mediated cleavage of 1123-GSH in NZW Rabbit hepatic S9 compared to the other species. 19F-NMR confirmed formation of 1123-GSH as the main metabolite of GSH mediated biotransformation of HFO-1123 in hepatic S9 fractions next to F-. Increased F- formation was detected in NZW Rabbit and Goettingen Minipig hepatic S9 in the presence of an NADPH regenerating system, indicating a higher rate of CYP-450 mediated metabolism in these species. Based on these findings, it is possible that CYP-450 mediated metabolism may contribute to HFO-1123 toxicity. In contrast to the increased formation of 1123-GSH in rat, mouse and NZW Rabbit hepatic S9 (compared to human and Goettingen Minipig), enzyme kinetic studies revealed a significantly higher beta-lyase activity towards 1123-CYS in renal cytosol of Goettingen Minipigs compared to cytosol from rats, mice, humans and NZW Rabbits. However, beta-lyase cleavage in renal NZW Rabbit cytosol was slightly increased compared to rat, mouse and human renal cytosols. 19F-NMR analysis confirmed increased time-dependent formation of MFA in renal Goettingen Minipig cytosol and NZW Rabbit (compared to human and rat cytosolic fractions). Three structurally not defined MFA-derivatives were detected exclusively in NZW Rabbit and Goettingen Minipig cytosols. Also, porcine kidney cells were more sensitive to cytotoxicity of 1123-CYS compared to rat and human kidney cells. Overall, increased beta-lyase mediate cleavage of 1123-CYS to MFA in Goettingen Minipig and NZW Rabbit kidney (compared to human and rat) may support the hypothesis that enzymatic cleavage by beta-lyases may account for the species-differences in HFO-1123 toxicity. However, the extent of GST mediated biotransformation in the liver as the initial step in HFO-1123 metabolism does not fully agree with this hypothesis, since 1123-GSH formation occurs at higher rates in rat, mouse and NZW Rabbit S9 as compared to the Goettingen Minipig. Based on the inconsistencies between the extent of GST and beta-lyase mediated biotransformation of HFO-1123 obtained by this study, a decisive statement about an increased biotransformation of HFO-1123 in susceptible species with a direct linkage to the species-specific toxicity cannot be drawn. Resulting from this, a clear and reliable conclusion regarding the risk for human health originating from HFO-1123 cannot be made. However, considering the death of Goettingen Minipigs and NZW Rabbits after inhalation exposure of HFO-1123 at concentrations great than 500 ppm and greater than 1250 ppm, respectively, this indicates a health concern for humans under peak exposure conditions. For a successful registration of HFO-1123 and its use as a refrigerant, further in vitro and in vivo investigations addressing uncertainties in the species-specific toxicity of HFO-1123 are urgently needed.}, subject = {Biotransformation}, language = {en} } @phdthesis{Zhang2024, author = {Zhang, Tengyu}, title = {Development of Modified polylysine based antibody conjugated nanoparticles with tumor-restricted, FcγR-independent stimulatory activity by targeting Fn14}, doi = {10.25972/OPUS-35865}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this study, we developed an innovative nanoparticle formulation to facilitate the delivery of antitumor antibodies to tumor sites. The study commenced with the utilization of 13 bispecific antibody fusion proteins, which targeted the Fn14 receptor, thereby validating the pivotal role of crosslinking in Fn14 receptor activation. Subsequently, gold nanoparticles were activated using COOH-PEG-SH in combination with EDC/NHS, and subsequently conjugated with two Fn14-targeting antibodies, PDL192 and 5B6. Following this, a pH-sensitive shell was generated on the outer layer of the antibody-coupled gold nanoparticles through the application of chemically modified polylysine. The resultant complexes, termed MPL-antibody-AuNP, demonstrated a release profile reminiscent of the tumor microenvironment (TME). Notably, these complexes released antibody-AuNPs only in slightly acidic conditions while remaining intact in neutral or basic environments. Functionality analysis further affirmed the pH-sensitive property of MPL-antibody-AuNPs, demonstrating that the antibodies only initiated potent Fn14 activation in slightly acidic environments. This formulation holds potential for applicability to antibodies or ligands targeting the 80 TNFRSF family, given that gold nanoparticles successfully served as platforms for antibody crosslinking, thereby transforming these antibodies into potent agonists. Moreover, the TME disintegration profile of MPL mitigates the potential cytotoxic effects of antibodies, thereby circumventing associated adverse side effects. This study not only showcases the potential of nanoparticle formulations in targeted therapy, but also provides a solid foundation for further investigations on their clinical application in the context of targeting category II TNFRSF receptors with antibodies or ligands.}, subject = {Immuntherapie}, language = {en} } @phdthesis{Chen2024, author = {Chen, Xinyu}, title = {How natural walking changes occipital alpha oscillations and concurrently modulates cognitive processes}, doi = {10.25972/OPUS-35295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352958}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Humans actively interact with the world through a wide range of body movements. To understand human cognition in its natural state, we need to incorporate ecologically relevant body movement into our account. One fundamental body movement during daily life is natural walking. Despite its ubiquity, the impact of natural walking on brain activity and cognition has remained a realm underexplored. In electrophysiology, previous studies have shown a robust reduction of ongoing alpha power in the parieto-occipital cortex during body movements. However, what causes the reduction of ongoing alpha, namely whether this is due to body movement or prevalent sensory input changes, was unknown. To clarify this, study 1 was performed to test if the alpha reduction is dependent on visual input. I compared the resting state alpha power during natural walking and standing, in both light and darkness. The results showed that natural walking led to decreased alpha activity over the occipital cortex compared to standing, regardless of the lighting condition. This suggests that the movement-induced modulation of occipital alpha activity is not driven by visual input changes during walking. I argue that the observed alpha power reduction reflects a change in the state of the subject based on disinhibition induced by walking. Accordingly, natural walking might enhance visual processing and other cognitive processes that involve occipital cortical activity. I first tested this hypothesis in vision. Study 2 was performed to examine the possible effects of natural walking across visual processing stages by assessing various neural markers during different movement states. The findings revealed an amplified early visual response, while a later visual response remain unaffected. A follow-up study 3 replicated the walking-induced enhancement of the early visual evoked potential and showed that the enhancement was dependent on specific stimulus-related parameters (eccentricity, laterality, distractor presence). Importantly, the results provided evidence that the enhanced early visual responses are indeed linked to the modulation of ongoing occipital alpha power. Walking also modulated the stimulus-induced alpha power. Specifically, it showed that when the target appeared in the fovea area without a distractor, walking exhibited a significantly reduced modulation of alpha power, and showed the largest difference to standing condition. This effect of eccentricity indicates that during later visual processing stages, the visual input in the fovea area is less processed than in peripheral areas while walking. The two visual studies showed that walking leads to an enhancement in temporally early visual processes which can be predicted by the walking-induced change in ongoing alpha oscillation likely marking disinhibition. However, while walking affects neural markers of early sensory processes, it does not necessarily lead to a change in the behavioural outcome of a sensory task. The two visual studies suggested that the behavioural outcome seems to be mainly based on later processing stages. To test the effects of walking outside the visual domain, I turned to audition in study 4. I investigated the influence of walking in a particular path vs. simply stepping on auditory processing. Specifically, the study tested whether enhanced processing due to natural walking can be found in primary auditory brain activity and whether the processing preferences are dependent on the walking path. In addition, I tested whether the changed spatial processing that was reported in previous visual studies can be seen in the auditory domain. The results showed enhanced sensory processing due to walking in the auditory domain, which was again linked to the modulation of occipital alpha oscillation. The auditory processing was further dependent on the walking path. Additionally, enhanced peripheral sensory processing, as found in vision, was also present in audition. The findings outside vision supported the idea of natural walking affecting cognition in a rather general way. Therefore in my study 5, I examined the effect of natural walking on higher cognitive processing, namely divergent thinking, and its correlation with the modulation of ongoing alpha oscillation. I analyzed alpha oscillations and behavioural performance during restricted and unrestricted movement conditions while subjects completed a Guilford's alternate uses test. The results showed that natural walking, as well as missing body restriction, reduces the occipital alpha ongoing power independent of the task phase which goes along with higher test scores. The occipital alpha power reduction can therefore be an indicator of a changed state that allows improved higher cognitive processes. In summary, the research presented in this thesis highlights that natural walking can change different processes in the visual and auditory domain as well as higher cognitive processes. The effect can be attributed to the movement of natural walking itself rather than to changes in sensory input during walking. The results further indicate that the walking-induced modulation of ongoing occipital alpha oscillations drives the cognitive effects. We therefore suggest that walking changes the inhibitory state which can influence awareness and attention. Such a mechanism could facilitate an adaptive enhancement in cognitive processes and thereby optimize movement-related behaviour such as navigation.}, subject = {Walking}, language = {en} } @phdthesis{Hadi2024, author = {Hadi, Naji Said Aboud}, title = {In vitro Studies on the Genotoxicity of Selected Pyrrolizidine Alkaloids}, doi = {10.25972/OPUS-37037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-370376}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Cancer is one of the leading causes of death worldwide. Toxic contaminants in human food or medicinal products, such as substances like pyrrolizidine alkaloids (PAs), have been thought to contribute to cancer incidence. PAs are found in many plant species as secondary metabolites, and they may affect humans through contaminated food sources, herbal medicines, and dietary supplements. Hundreds of compounds belonging to PAs have been identified, differing in their chemical structures, either in their necine base moiety or esterification at their necic acid moiety. PAs undergo hepatic metabolism, and after this process, they can induce hepatotoxicity, genotoxicity, and carcinogenicity. However, the mechanism of inducing genotoxicity and carcinogenicity is still unclear and warrants further investigation. Therefore, the present study aims to investigate the mechanism of genotoxicity induced by selected PAs with different chemical structures in in vitro systems. Primarily, human hepatoma HepG2 cells were utilized, and in co-culture, metabolically active HepG2 cells were combined with non-metabolically active human cervical HeLa H2B-GFP cells. First, the genotoxicity of the PAs europine, lycopsamine, retrorsine, riddelliine, seneciphylline, echimidine, and lasiocarpine was investigated in the cytokinesis-block micronucleus (CBMN) assay. All seven selected PAs caused the formation of micronuclei in a dose-dependent manner, with the maximal increase of micronucleus formation ranging from 1.64 to 2.0 fold. The lowest concentrations at which significant induction of micronuclei was found were 3.2 µM for lasiocarpine and riddelliine, 32 µM for retrorsine and echimidine, and 100 µM for seneciphylline, europine, and lycopsamine. These results confirmed previously published potency rankings in the micronucleus assay. The same PAs, with the exception of seneciphylline, were also investigated in a crosslink-modified comet assay, and reduced tail formation after hydrogen peroxide treatment was found in all diester-type PAs. Meanwhile, an equimolar concentration of the monoesters europine and lycopsamine did not significantly reduce DNA migration. Thus, the crosslinking activity was related to the ester type. Next, the role of metabolic enzymes and membrane transporters in PA-induced genotoxicity was assessed. Ketoconazole (CYP 450-3A4 inhibitor) prevented lasiocarpine-induced micronucleus formation completely, while furafylline (CYP 450-1A2 inhibitor) reduced lasiocarpine-induced micronucleus formation, but did not abolish it completely. This implies that the CYP 450 enzymes play an important role in PA-induced genotoxicity. Carboxylesterase 2 enzyme (CES 2) is commonly known to be involved in the detoxification of xenobiotics. Loperamide (CES 2 inhibitor) yielded an increased formation of lasiocarpine-induced micronuclei, revealing a possible role of CES-mediated detoxification in the genotoxicity of lasiocarpine. Also, intracellular glutathione (GSH) plays an important role in the detoxification of xenobiotics or toxins in the cells. Cells which had been pretreated with L-buthionine sulfoximine (BSO) to reduce GSH content were significantly more sensitive for the induction of micronucleus formation by lasiocarpine revealing the importance of GSH in PA-induced genotoxicity. Quinidine (Q) and nelfinavir (NFR) are OCT1 and OATP1B1 influx transporter inhibitors, respectively, which reduced micronucleus induction by lasiocarpine (only quinidine significantly), but not completely, pointing to a relevance of OCT1 for PA uptake in HepG2 cells. Verapamil (V) and benzbromarone (Bz) are MDR1 and MRP2 efflux transporter inhibitors, respectively, and they caused a slightly increased micronucleus induction by lasiocarpine (significant only for benzbromarone) thus, revealing the role of efflux transporters in PA-induced genotoxicity. The mechanistic approach to PA-induced genotoxicity was further studied based on oxidative stress via the formation of reactive oxygen species (ROS) in HepG2 cells. Overproduction of ROS can cross-link cellular macromolecules such as DNA, leading to genomic damage. An equimolar concentration of 10 µM of lasiocarpine (open-diester PA), riddelliine (cyclic-diester PA), and europine (monoester) significantly induced ROS production, with the highest ROS generation observed after lasiocarpine treatment, followed by riddelliine and then europine. No significant increase in ROS production was found with lycopsamine (10 µM; monoester PA), even at a higher concentration (320 µM). The generation of ROS by these PAs was further analyzed for confirmation by using 5 mM of the thiol radical scavenger antioxidant N-acetyl cysteine (NAC) combined with lasiocarpine, riddelliine, or europine. This analysis yielded a significant decrease in ROS after combining NAC with lasiocarpine, riddelliine, and europine. In addition, lasiocarpine, riddelliine, and europine induced a loss of mitochondrial membrane potential, pointing to mitochondria as the source of ROS generation. In vivo, hepatic sinusoidal epithelial cells (HSECs) are known to be damaged first by PAs after hepatic metabolization, but HSECs themselves do not express the required metabolic enzymes for activation of PAs. To mimic this situation, HepG2 cells were used to metabolically activate PA in a co-culture with HeLa H2B-GFP cells as non-metabolically active neighbours. Due to the green fluorescent GFP label the HeLa cells could be identified easily based in the co-culture. The PAs europine, riddelliine and lasiocarpine induced micronucleus formation in HepG2 cells, and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Metabolic inhibition of CYP 450 enzymes with ketoconazole abrogated micronucleus formation induced by the same PAs tested in the co-culture. The efflux transporter inhibitors verapamil and benzbromarone reduced the micronucleus formation in the co-culture. Furthermore, mitotic disturbances as an additional genotoxic mechanism of action were observed in HepG2 cells and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Overall, we were able to show that PAs were activated by HepG2 cells and the metabolites induced genomic damage in co-cultured non-metabolically active green HeLa cells. Finally, in HepG2 cells as well as the co-culture, combinations of PAs lasiocarpine and riddelliine favoured an additive effect rather than synergism. Thus, this study therefore provides support that the assumption of dose-addition can be applied in the characterization of the genotoxicity risk of PAs present in a mixture.}, subject = {Pyrrolizidinalkaloide}, language = {en} } @phdthesis{Schwebs2024, author = {Schwebs, Marie}, title = {Structure and dynamics of the plasma membrane: a single-molecule study in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-27569}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275699}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The unicellular, flagellated parasite Trypanosoma brucei is the causative agent of human African sleeping sickness and nagana in livestock. In the last decades, it has become an established eukaryotic model organism in the field of biology, as well as in the interdisciplinary field of biophysics. For instance, the dense variant surface glycoprotein (VSG) coat offers the possibility to study the dynamics of GPI-anchored proteins in the plasma membrane of living cells. The fluidity of the VSG coat is not only an interesting object of study for its own sake, but is critically important for the survival of the parasite in the mammalian host. In order to maintain the integrity of the coat, the entire VSG coat is recycled within a few minutes. This is surprisingly fast for a purely diffusive process with the flagellar pocket (FP) as the sole site for endo- and exocytosis. Previous studies characterising VSG dynamics using FRAP reported diffusion coefficients that were not sufficient to to enable fast turnover based on passive VSG randomisation on the trypanosome surface. In this thesis, live-cell single-molecule fluorescence microscopy (SMFM) was employed to elucidate whether VSG diffusion coefficients were priorly underestimated or whether directed forces could be involved to bias VSGs towards the entrance of the FP. Embedding the highly motile trypanosomes in thermo-stable hydrogels facilitated the investigation of VSG dynamics on living trypanosomes at the mammalian host's temperature of 37°C. To allow for a spatial correlation of the VSG dynamics to the FP entrance, a cell line was employed harbouring a fluorescently labelled structure as a reference. Sequential two-colour SMFM was then established to allow for recording and registration of the dynamic and static single-molecule information. In order to characterise VSG dynamics, an algorithm to obtain reliable information from short trajectories was adapted (shortTrAn). It allowed for the quantification of the local dynamics in two distinct scenarios: diffusion and directed motion. The adaptation of the algorithm to the VSG data sets required the introduction of an additional projection filter. The algorithm was further extended to take into account the localisation errors inherent to single-particle tracking. The results of the quantification of diffusion and directed motion were presented in maps of the trypanosome surface, including an outline generated from a super-resolved static structure as a reference. Information on diffusion was displayed in one map, an ellipse plot. The colour code represented the local diffusion coefficient, while the shape of the ellipses provided an indication of the diffusion behaviour (aniso- or isotropic diffusion). The eccentricity of the ellipses was used to quantify deviations from isotropic diffusion. Information on directed motion was shown in three maps: A velocity map, representing the amplitude of the local velocities in a colour code. A quiver plot, illustrating the orientation of directed motion, and a third map which indicated the relative standard error of the local velocities colour-coded. Finally, a guideline based on random walk simulations was used to identify which of the two motion scenarios dominated locally. Application of the guideline to the VSG dynamics analysed by shortTrAn yielded supermaps that showed the locally dominant motion mode colour-coded. I found that VSG dynamics are dominated by diffusion, but several times faster than previously determined. The diffusion behaviour was additionally characterised by spatial heterogeneity. Moreover, isolated regions exhibiting the characteristics of round and elongated traps were observed on the cell surface. Additionally, VSG dynamics were studied with respect to the entrance of the FP. VSG dynamics in this region displayed similar characteristics compared to the remainder of the cell surface and forces biasing VSGs into the FP were not found. Furthermore, I investigated a potential interference of the attachment of the cytoskeleton to the plasma membrane with the dynamics of VSGs which are anchored to the outer leaflet of the membrane. Preliminary experiments were conducted on osmotically swollen trypanosomes and trypanosomes depleted for a microtubule-associated protein anchoring the subpellicular microtubule cytoskeleton to the plasma membrane. The measurements revealed a trend that detachment of the cytoskeleton could be associated with a reduction in the VSG diffusion coefficient and a loss of elongated traps. The latter could be an indication that these isolated regions were caused by underlying structures associated with the cytoskeleton. The measurements on cells with an intact cytoskeleton were complemented by random walk simulations of VSG dynamics with the newly determined diffusion coefficient on long time scales not accessible in experiments. Simulations showed that passive VSG randomisation is fast enough to allow for a turnover of the full VSG coat within a few minutes. According to an estimate based on the known rate of endocytosis and the newly determined VSG diffusion coefficient, the majority of exocytosed VSGs could escape from the FP to the cell surface without being immediately re-endocytosed.}, subject = {Trypanosoma brucei}, language = {en} } @phdthesis{CruzdeCasas2024, author = {Cruz de Casas, Paulina}, title = {Sphingolipids as modulators of T cell function}, doi = {10.25972/OPUS-35969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359698}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The immune system is responsible for the preservation of homeostasis whenever a given organism is exposed to distinct kinds of perturbations. Given the complexity of certain organisms like mammals, and the diverse types of challenges that they encounter (e.g. infection or disease), the immune system evolved to harbor a great variety of distinct immune cell populations with specialized functions. For instance, the family of T cells is sub-divided into conventional (Tconv) and unconventional T cells (UTCs). Tconv form part of the adaptive arm of the immune system and are comprised of αβ CD4+ or CD8+ cells that differentiate from na{\"i}ve to effector and memory populations upon activation and are essential during infection and cancer. Furthermore, UTCs, which include γδ T cells, NKT and MAIT, are involved in innate and adaptive immune responses, due to their dual mode of activation, through cytokines (innate-like) or TCR (adaptive), and function. Despite our understanding of the basic functions of T cells in several contexts, a great number of open questions related to their basic biology remain. For instance, the mechanism behind the differentiation of na{\"i}ve CD4+ and CD8+ T cells into effector and memory populations is not fully understood. Moreover, the exact function and relevance of distinct UTC subpopulations in a physiological context have not been fully clarified. Here, we investigated the factors mediating na{\"i}ve CD8+ T cell differentiation into effector and memory cells. By using flow cytometry, mass spectrometry, enzymatic assays, and transgenic mouse models, we found that the membrane bound enzyme sphingomyelin-phosphodiesterase acid-like 3b (Smpdl3b) is crucial for the maintenance of memory CD8+ T cells. Our data show that the absence of Smpdl3b leads to diminished CD8+ T cell memory, and a loss of stem-like memory populations due to an aggravated contraction. Our scRNA-seq data suggest that Smpdl3b could be involved in clathrinmediated endocytosis through modulation of Huntingtin interacting protein 1 (Hip1) levels, likely regulating TCR-independent signaling events. Furthermore, in this study we explored the role of UTCs in lymph node-specific immune responses. By using transgenic mouse models for photolabeling, lymph node transplantation models, infection models and flow cytometry, we demonstrate that S1P regulates the migration of tissue-derived UTC from tissues to draining lymph nodes, resulting in heterogeneous immune responses mounted by lymph nodes draining different tissues. Moreover, our unbiased scRNAseq and single lineage-deficient mouse models analysis revealed that all UTC lineages (γδ T cells, NKT and MAIT) are organized in functional units, based on transcriptional homogeneity, shared microanatomical location and migratory behavior, and numerical and functional redundancy. Taken together, our studies describe additional cell intrinsic (Smpdl3b) and extrinsic (S1Pmediated migration) functions of sphingolipid metabolism modulating T cell biology. We propose the S1P/S1PR1/5 signaling axis as the potential survival pathway for Smpdl3b+ memory CD8+ T cells and UTCs, mainly in lymph nodes. Possibly, Smpdl3b regulates S1P/S1PR signaling by balancing ligandreceptor endocytosis, while UTCs migrate to lymph nodes during homeostasis to be exposed to specific levels of S1P that assure their maintenance. Our results are clinically relevant, since several drugs modulating the S1P/S1PR signaling axis or the levels of Smpdl3b are currently used to treat human diseases, such as multiple sclerosis and B cell-mediated diseases. We hope that our discoveries will inspire future studies focusing on sphingolipid metabolism in immune cell biology.}, subject = {T-Lymphozyt}, language = {en} } @phdthesis{Amini2024, author = {Amini, Emad}, title = {How central and peripheral clocks and the neuroendocrine system interact to time eclosion behavior in \(Drosophila\) \(melanogaster\)}, doi = {10.25972/OPUS-36130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-361309}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {To grow larger, insects must shed their old rigid exoskeleton and replace it with a new one. This process is called molting and the motor behavior that sheds the old cuticle is called ecdysis. Holometabolic insects have pupal stages in between their larval and adult forms, during which they perform metamorphosis. The pupal stage ends with eclosion, i.e., the emergence of the adult from the pupal shell. Insects typically eclose at a specific time during the day, likely when abiotic conditions are at their optimum. A newly eclosed insect is fragile and needs time to harden its exoskeleton. Hence, eclosion is regulated by sophisticated developmental and circadian timing mechanisms. In Drosophila melanogaster, eclosion is limited to a daily time window in the morning, regarded as the "eclosion gate". In a population of laboratory flies entrained by light/dark cycles, most of the flies eclose around lights on. This rhythmic eclosion pattern is controlled by the circadian clock and persists even under constant conditions. Developmental timing is under the control of complex hormonal signaling, including the steroid ecdysone, insulin-like peptides, and prothoracicotropic hormone (PTTH). The interactions of the central circadian clock in the brain and a peripheral clock in the prothoracic gland (PG) that produces ecdysone are important for the circadian timing of eclosion. These two clocks are connected by a bilateral pair of peptidergic PTTH neurons (PTTHn) that project to the PG. Before each molt, the ecdysone level rises and then falls shortly before ecdysis. The falling ecdysone level must fall below a certain threshold value for the eclosion gate to open. The activity of PTTHn is inhibited by short neuropeptide F (sNPF) from the small ventrolateral neurons (sLNvs) and inhibition is thought to lead to a decrease in ecdysone production. The general aim of this thesis is to further the understanding of how the circadian clock and neuroendocrinal pathways are coordinated to drive eclosion rhythmicity and to identify when these endocrinal signaling pathways are active. In Chapter I, a series of conditional PTTHn silencing-based behavioral assays, combined with neuronal activity imaging techniques such as non-invasive ARG-Luc show that PTTH signaling is active and required shortly before eclosion and may serve to phase-adjust the activity of the PG at the end of pupal development. Trans-synaptic anatomical stainings identified the sLNvs, dorsal neurons 1 (DN1), dorsal neurons 2 (DN2), and lateral posterior neurons (LPNs) clock neurons as directly upstream of the PTTHn. Eclosion motor behavior is initiated by Ecdysis triggering hormone (ETH) which activates a pair of ventromedial (Vm) neurons to release eclosion hormone (EH) which positively feeds back to the source of ETH, the endocrine Inka cells. In Chapter II trans-synaptic tracing showed that most clock neurons provide input to the Vm and non-canonical EH neurons. Hence, clock can potentially influence the ETH/EH feedback loop. The activity profile of the Inka cells and Vm neurons before eclosion is described. Vm and Inka cells are active around seven hours before eclosion. Interestingly, all EH neurons appear to be exclusively peptidergic. In Chapter III, using chemoconnectomics, PTTHns were found to express receptors for sNPF, allatostatin A (AstA), allatostatin C (AstC), and myosuppressin (Ms), while EH neurons expressed only Ms and AstA receptors. Eclosion assays of flies with impaired AstA, AstC, or Ms signaling do not show arrhythmicity under constant conditions. However, optogenetic activation of the AstA neurons strongly suppresses eclosion. Chapter IV focuses on peripheral ventral' Tracheal dendrite (v'Td) and class IV dendritic arborization (C4da) neurons. The C4da neurons mediate larval light avoidance through endocrine PTTH signaling. The v'Td neurons mainly receive O2/CO2 input from the trachea and are upstream of Vm neurons but are not required for eclosion rhythmicity. Conditional ablation of the C4da neurons or torso (receptor of PTTH) knock-out in the C4da neurons impaired eclosion rhythmicity. Six to seven hours before eclosion, PTTHn, C4da, and Vm neurons are active based on ARG-Luc imaging. Thus, C4da neurons may indirectly connect the PTTHn to the Vm neurons. In summary, this thesis advances our knowledge of the temporal activity and role of PTTH signaling during pupal development and rhythmic eclosion. It further provides a comprehensive characterization of the synaptic and peptidergic inputs from clock neurons to PTTHn and EH neurons. AstA, AstC, and Ms are identified as potential modulators of eclosion circuits and suggest an indirect effect of PTTH signaling on EH signaling via the peripheral sensory C4da neurons.}, subject = {Neuroendokrines System}, language = {en} }