@article{HaakeHaackSchaeferetal.2023, author = {Haake, Markus and Haack, Beatrice and Sch{\"a}fer, Tina and Harter, Patrick N. and Mattavelli, Greta and Eiring, Patrick and Vashist, Neha and Wedekink, Florian and Genssler, Sabrina and Fischer, Birgitt and Dahlhoff, Julia and Mokhtari, Fatemeh and Kuzkina, Anastasia and Welters, Marij J. P. and Benz, Tamara M. and Sorger, Lena and Thiemann, Vincent and Almanzar, Giovanni and Selle, Martina and Thein, Klara and Sp{\"a}th, Jacob and Gonzalez, Maria Cecilia and Reitinger, Carmen and Ipsen-Escobedo, Andrea and Wistuba-Hamprecht, Kilian and Eichler, Kristin and Filipski, Katharina and Zeiner, Pia S. and Beschorner, Rudi and Goedemans, Renske and Gogolla, Falk Hagen and Hackl, Hubert and Rooswinkel, Rogier W. and Thiem, Alexander and Romer Roche, Paula and Joshi, Hemant and P{\"u}hringer, Dirk and W{\"o}ckel, Achim and Diessner, Joachim E. and R{\"u}diger, Manfred and Leo, Eugen and Cheng, Phil F. and Levesque, Mitchell P. and Goebeler, Matthias and Sauer, Markus and Nimmerjahn, Falk and Schuberth-Wagner, Christine and Felten, Stefanie von and Mittelbronn, Michel and Mehling, Matthias and Beilhack, Andreas and van der Burg, Sjoerd H. and Riedel, Angela and Weide, Benjamin and Dummer, Reinhard and Wischhusen, J{\"o}rg}, title = {Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-39817-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357333}, year = {2023}, abstract = {Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.}, language = {en} } @article{MunawarZhouPrommersbergeretal.2023, author = {Munawar, Umair and Zhou, Xiang and Prommersberger, Sabrina and Nerreter, Silvia and Vogt, Cornelia and Steinhardt, Maximilian J. and Truger, Marietta and Mersi, Julia and Teufel, Eva and Han, Seungbin and Haertle, Larissa and Banholzer, Nicole and Eiring, Patrick and Danhof, Sophia and Navarro-Aguadero, Miguel Angel and Fernandez-Martin, Adrian and Ortiz-Ruiz, Alejandra and Barrio, Santiago and Gallardo, Miguel and Valeri, Antonio and Castellano, Eva and Raab, Peter and Rudert, Maximilian and Haferlach, Claudia and Sauer, Markus and Hudecek, Michael and Martinez-Lopez, J. and Waldschmidt, Johannes and Einsele, Hermann and Rasche, Leo and Kort{\"u}m, K. Martin}, title = {Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma}, series = {Communications Biology}, volume = {6}, journal = {Communications Biology}, doi = {10.1038/s42003-023-05683-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357609}, year = {2023}, abstract = {The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.}, language = {en} } @article{GaritanoTrojaolaSanchoGoetzetal.2021, author = {Garitano-Trojaola, Andoni and Sancho, Ana and G{\"o}tz, Ralph and Eiring, Patrick and Walz, Susanne and Jetani, Hardikkumar and Gil-Pulido, Jesus and Da Via, Matteo Claudio and Teufel, Eva and Rhodes, Nadine and Haertle, Larissa and Arellano-Viera, Estibaliz and Tibes, Raoul and Rosenwald, Andreas and Rasche, Leo and Hudecek, Michael and Sauer, Markus and Groll, J{\"u}rgen and Einsele, Hermann and Kraus, Sabrina and Kort{\"u}m, Martin K.}, title = {Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02215-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260709}, year = {2021}, abstract = {The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.}, language = {en} } @article{TrinksReinhardDrobnyetal.2021, author = {Trinks, Nora and Reinhard, Sebastian and Drobny, Matthias and Heilig, Linda and L{\"o}ffler, J{\"u}rgen and Sauer, Markus and Terpitz, Ulrich}, title = {Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02669-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264996}, year = {2021}, abstract = {Expansion microscopy (ExM) enables super-resolution fluorescence imaging on standard microscopes by physical expansion of the sample. However, the investigation of interactions between different organisms such as mammalian and fungal cells by ExM remains challenging because different cell types require different expansion protocols to ensure identical, ideally isotropic expansion of both partners. Here, we introduce an ExM method that enables super-resolved visualization of the interaction between NK cells and Aspergillus fumigatus hyphae. 4-fold expansion in combination with confocal fluorescence imaging allows us to resolve details of cytoskeleton rearrangement as well as NK cells' lytic granules triggered by contact with an RFP-expressing A. fumigatus strain. In particular, subdiffraction-resolution images show polarized degranulation upon contact formation and the presence of LAMP1 surrounding perforin at the NK cell-surface post degranulation. Our data demonstrate that optimized ExM protocols enable the investigation of immunological synapse formation between two different species with so far unmatched spatial resolution.}, language = {en} } @article{KouhestaniGeisAlsourietal.2021, author = {Kouhestani, Dina and Geis, Maria and Alsouri, Saed and Bumm, Thomas G. P. and Einsele, Hermann and Sauer, Markus and Stuhler, Gernot}, title = {Variant signaling topology at the cancer cell-T-cell interface induced by a two-component T-cell engager}, series = {Cellular \& Molecular Immunology}, volume = {18}, journal = {Cellular \& Molecular Immunology}, doi = {10.1038/s41423-020-0507-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241189}, pages = {1568-1570}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{WeissSchlegelTerpitzetal.2020, author = {Weiss, Esther and Schlegel, Jan and Terpitz, Ulrich and Weber, Michael and Linde, J{\"o}rg and Schmitt, Anna-Lena and H{\"u}nniger, Kerstin and Marischen, Lothar and Gamon, Florian and Bauer, Joachim and L{\"o}ffler, Claudia and Kurzai, Oliver and Morton, Charles Oliver and Sauer, Markus and Einsele, Hermann and Loeffler, Juergen}, title = {Reconstituting NK Cells After Allogeneic Stem Cell Transplantation Show Impaired Response to the Fungal Pathogen Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.02117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212581}, year = {2020}, abstract = {Delayed natural killer (NK) cell reconstitution after allogeneic stem cell transplantation (alloSCT) is associated with a higher risk of developing invasive aspergillosis. The interaction of NK cells with the human pathogen Aspergillus (A.) fumigatus is mediated by the fungal recognition receptor CD56, which is relocated to the fungal interface after contact. Blocking of CD56 signaling inhibits the fungal mediated chemokine secretion of MIP-1α, MIP-1β, and RANTES and reduces cell activation, indicating a functional role of CD56 in fungal recognition. We collected peripheral blood from recipients of an allograft at defined time points after alloSCT (day 60, 90, 120, 180). NK cells were isolated, directly challenged with live A. fumigatus germ tubes, and cell function was analyzed and compared to healthy age and gender-matched individuals. After alloSCT, NK cells displayed a higher percentage of CD56\(^{bright}\)CD16\(^{dim}\) cells throughout the time of blood collection. However, CD56 binding and relocalization to the fungal contact side were decreased. We were able to correlate this deficiency to the administration of corticosteroid therapy that further negatively influenced the secretion of MIP-1α, MIP-1β, and RANTES. As a consequence, the treatment of healthy NK cells ex vivo with corticosteroids abrogated chemokine secretion measured by multiplex immunoassay. Furthermore, we analyzed NK cells regarding their actin cytoskeleton by Structured Illumination Microscopy (SIM) and flow cytometry and demonstrate an actin dysfunction of NK cells shown by reduced F-actin content after fungal co-cultivation early after alloSCT. This dysfunction remains until 180 days post-alloSCT, concluding that further actin-dependent cellular processes may be negatively influenced after alloSCT. To investigate the molecular pathomechansism, we compared CD56 receptor mobility on the plasma membrane of healthy and alloSCT primary NK cells by single-molecule tracking. The results were very robust and reproducible between tested conditions which point to a different molecular mechanism and emphasize the importance of proper CD56 mobility.}, language = {en} } @article{ZieglerWeissSchmittetal.2017, author = {Ziegler, Sabrina and Weiss, Esther and Schmitt, Anna-Lena and Schlegel, Jan and Burgert, Anne and Terpitz, Ulrich and Sauer, Markus and Moretta, Lorenzo and Sivori, Simona and Leonhardt, Ines and Kurzai, Oliver and Einsele, Hermann and Loeffler, Juergen}, title = {CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {6138}, doi = {10.1038/s41598-017-06238-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170637}, year = {2017}, abstract = {Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.}, language = {en} }