@article{WuPonsGoudetetal.2017, author = {Wu, Yu and Pons, Val{\´e}rie and Goudet, Am{\´e}lie and Panigai, Laetitia and Fischer, Annette and Herweg, Jo-Ana and Kali, Sabrina and Davey, Robert A. and Laporte, J{\´e}r{\^o}me and Bouclier, C{\´e}line and Yousfi, Rahima and Aubenque, C{\´e}line and Merer, Goulven and Gobbo, Emilie and Lopez, Roman and Gillet, Cynthia and Cojean, Sandrine and Popoff, Michel R. and Clayette, Pascal and Le Grand, Roger and Boulogne, Claire and Tordo, No{\"e}l and Lemichez, Emmanuel and Loiseau, Philippe M. and Rudel, Thomas and Sauvaire, Didier and Cintrat, Jean-Christophe and Gillet, Daniel and Barbier, Julien}, title = {ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-15466-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173170}, year = {2017}, abstract = {Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identifed the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efciently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.}, language = {en} } @article{HerwegHansmeierOttoetal.2015, author = {Herweg, Jo-Ana and Hansmeier, Nicole and Otto, Andreas and Geffken, Anna C. and Subbarayal, Prema and Prusty, Bhupesh K. and Becher, D{\"o}rte and Hensel, Michael and Schaible, Ulrich E. and Rudel, Thomas and Hilbi, Hubert}, title = {Purification and proteomics of pathogen-modified vacuoles and membranes}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {5}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {48}, doi = {10.3389/fcimb.2015.00048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151823}, year = {2015}, abstract = {Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.}, language = {en} }