@article{RiehlSchartlKollinger1984, author = {Riehl, R. and Schartl, Manfred and Kollinger, G.}, title = {Comparative studies on the ultrastructure of malignant melanoma in fish and human by freeze-etching and transmission electron microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61920}, year = {1984}, abstract = {Malignant melanomas (MM) in the fish Xiphophorus and in humans were studied both by transmission electron microscopy (TEM) and freeze-etching (FE). In both fish and human melanomas the cells show interdigitations of the,plasma membranes. The nuclei are large and lobulated and have many nuclear pores. Melanosomes are abundant and melanosome complexes ("compound melanosomes") occur regularly. Pinocytotic vesicles could be demonstrated in fish and human melanomas showing iocal differences in frequency and distribution patterns in the tumor. lntercellular junctions are lacking in MM cells from fish and humans. The FE technique showed considerable advantages in demonstrating membrane-surface peculiarities such as nuclear pores or pinocytotic vesicles. The FE replicas of fish melanomas are like those of humans. These findings may support the hypothesis that melanoma in fish and humans reflect the same biological phenomenon.}, subject = {Physiologische Chemie}, language = {en} } @article{MeyerSchartl1984, author = {Meyer, Manfred K. and Schartl, Manfred}, title = {Pseudotropheus (Maylandia) hajomaylandi n. sp., a new taxon from Lake Malawi}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70989}, year = {1984}, abstract = {Pseudotropheus hajomaylandi (loc. typ. Isle of Chisumulu, Lake Malawi) is described as a new species. It is compared with Ps. aurora, Ps. greshakei, Ps. livingstonii, Ps. lombardoi, and Ps. zebra. All these taxa, including Ps. hajomaylandi and Ps. heteropictus, are classified in the subgenus Maylandia.}, subject = {Buntbarsche}, language = {en} } @inproceedings{AndersSchartlBarnekow1984, author = {Anders, Fritz and Schartl, Manfred and Barnekow, Angelika}, title = {Xiphophorus as an in vivo model for studies on oncogenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86398}, year = {1984}, abstract = {The capacity of Xiphophorus to develop neoplasia can be formally assigned to a "tumor gene" (Tu), which appears to be a normal part of the genome of all individuals. The wild fish have evolved population-specific and cell type-specific systems of regulatory genes (R) for Tu that protect the fish from neoplasia. Hybridization of members of different wild populations in the laborstory followed by treatment of the hybrids with carcinogens led to disintegration of the R systems permitting excessive expression of Tu and thus resulting in neoplasia. Certain hybrids developed neoplasia even spontaneously. Observations on the genuine phenotypic effect of the derepressed Tu in the early embryo indicated an essential normal function of this oncogene in cell differentiation, proliferation and cell-cell communication. Tu appeared to be indispensable in the genome but may also be present in accessory copics. Recently, c-src, the cellular homolog of the Rous sarcoma virus oncogene v-src, was detected in Xiphophorus. The protein product of c-src, pp60c-src, was identified and then examined by its associated kinase activity. This pp60c-src was found in all individuals tested, but, depending on the genotype, its kinase activity was different. The genetic characters of c-src, such as linkage relations, dosage relations, expression, etc., correspond to those of Tu. From a systematic study which showed that pp60c-src was present in all metazoa tested ranging from mammals down to sponges, we concluded that c-src has evolved with the multicellular organization of animals. Neoplasia of animals and humans is a characteristic closely related to this evolution. Our data showed that small aquariurn fish, besides being used successfully because they are time-, space-, and money-saving systems for carcinogenicity testing, are also highly suitable for basic studies on neoplasia at the populational, morphological, developmental, cell biological, and molecular levels.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @article{SchartlBarnekowBaueretal.1982, author = {Schartl, Manfred and Barnekow, A. and Bauer, H. and Anders, F.}, title = {Correlations of inheritance and expression between a tumor gene and the cellular homolog of the Rous sarcoma virus-transforming gene in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61937}, year = {1982}, abstract = {No abstract available}, subject = {Physiologische Chemie}, language = {en} } @article{BarnekowSchartlAndersetal.1982, author = {Barnekow, A. and Schartl, Manfred and Anders, F. and Bauer, H.}, title = {Identification of a fish protein associated with a kinase activity and related to the Rous sarcoma virus transforming protein}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61946}, year = {1982}, abstract = {No abstract available}, subject = {Physiologische Chemie}, language = {en} } @article{SchartlSchartlAnders1982, author = {Schartl, A. and Schartl, Manfred and Anders, F.}, title = {Promotion and regression of neoplasia by testosterone-promoted cell differentiation in Xiphophorus and Girardinus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86684}, year = {1982}, abstract = {No abstract available.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @article{SchartlBarnekow1982, author = {Schartl, Manfred and Barnekow, Angelika}, title = {The expression in eukaryotes of a tyrosine kinase which is reactive with pp60v-src antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86208}, year = {1982}, abstract = {All specimens of Eumetazoa and Parazoa, ranging from mammals, birds, teleosts, sharks, lampreys, amphioxus, insects, down to sponges showed the pp60c-src associated kinase activity, indicating that c-src, which is the cellular homologue of the oncogene v-src of Rous sarcoma virus (RSV) is probably present in all multicellular animals. Protozoa and plants did not show pp60c-src: kinase activity. The degree of c-src expression depends on the taxonomic rank of the Eumetazoa tested, and is organ-specific with nervaus tissues displaying the highest kinase activities. In the central nervous system of mammals and birds we found a high c-src expression, and in that of the lampreys, amphioxus, and insects the lowest. Unexpectedly, total extracts of sponges showed an amount of pp60c-src kinase activity similar to that of brain cell extracts of mammals and birds. These findings suggest that pp60c-src is a phylogenetic old protein that might have evolved together with the multicellular organisation of Metazoa, and that might be of importance in proliferation and differentiation of nontransformed cells.}, subject = {Protein-Tyrosin-Kinasen}, language = {en} } @inproceedings{SchartlSchartlAnders1981, author = {Schartl, A. and Schartl, Manfred and Anders, F.}, title = {Phenotypic conversion of malignant melanoma to benign melanoma and vice versa in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86662}, year = {1981}, abstract = {No abstract available.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @inproceedings{AndersSchollSchartl1981, author = {Anders, F. and Scholl, E. and Schartl, Manfred}, title = {Environmental and hereditary factors in the causation of neoplasia, based on studies of the Xiphophorus fish melanoma system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86402}, year = {1981}, abstract = {Neoplasia in Xiphophorus can be classified into: a) a Jarge group triggered by carcinogens; b) a large group triggered by promoters; and c) a small group that develops "spontaneously" according to Mendelian Jaw. The process leading to susceptibility for neoplasia is represented by the disintegration of gene systems that normally protect the fish from neoplasia. Interpopulational arid interracial hybridization is the most effective process that Ieads to disintegration of the protective gene systems. Environmental factors may complete disintegration in somatic cells and thus may trigger neoplasia. The applications of the findings on Xiphophorus to humans are discussed.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @inproceedings{AndersSchartlScholl1981, author = {Anders, F. and Schartl, Manfred and Scholl, E.}, title = {Evaluation of environmental and hereditary factors in carcinogenesis, based on studies in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72741}, year = {1981}, abstract = {Neoplasia in Xiphophorus can be classified into a) a large group that is triggered by carcinogens; b) a large group triggered by promoters; c) a small group that develops "spontaneously" following interpopulational and interracial hybridizations; and d) a small group that develops "spontaneously" following germ line mutation. The process leading to susceptibility for neoplasia is represented by the disintegration of gene systems that normally protect the fish from neoplasia. Hybridization is the most effective process that leads to disintegration of the protection gene systems. Environmental factors may complete disintegration and thus may trigger neoplasia. It is discussed whether the findings on Xiphophorus may also apply to humans.}, subject = {Schwertk{\"a}rpfling}, language = {en} }