@article{BrevikvanDonkelaarWeberetal.2016, author = {Brevik, Erlend J and van Donkelaar, Marjolein M. J. and Weber, Heike and S{\´a}nchez-Mora, Cristina and Jacob, Christian and Rivero, Olga and Kittel-Schneider, Sarah and Garcia-martinez, Iris and Aebi, Marcel and van Hulzen, Kimm and Cormand, Bru and Ramos-Quiroga, Josep A and Lesch, Klaus-Peter and Reif, Andreas and Ribases, Marta and Franke, Barbara and Posserud, Maj-Britt and Johansson, Stefan and Lundervold, Astri J. and Haavik, Jan and Zayats, Tetyana}, title = {Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder}, series = {American Journal of Medical Genetics Part B-Neuropsychiatric Genetics}, volume = {171B}, journal = {American Journal of Medical Genetics Part B-Neuropsychiatric Genetics}, number = {5}, organization = {IMAGE Consortium}, doi = {10.1002/ajmg.b.32434}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188116}, pages = {733-747}, year = {2016}, abstract = {Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40\%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P<5.00E-08). The strongest signal in aADHD was observed at rs10826548, within a long noncoding RNA gene (beta = -1.66, standard error (SE) = 0.34, P = 1.07E-06), closely followed by rs35974940 in the neurotrimin gene (beta = 3.23, SE = 0.67, P = 1.26E-06). The top GWA SNPs observed in aADHD showed significant enrichment of signals from both the defiant/vindictive dimension (Fisher's P-value = 2.28E-06) and the irritable dimension in cADHD (Fisher's P-value = 0.0061). In sum, our results identify a number of biologically interesting markers possibly underlying childhood aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders.}, language = {en} } @article{ZayatsJacobsenKleppeetal.2016, author = {Zayats, T and Jacobsen, KK and Kleppe, R and Jacob, CP and Kittel-Schneider, S and Ribas{\´e}s, M and Ramos-Quiroga, JA and Richarte, V and Casas, M and Mota, NR and Grevet, EH and Klein, M and Corominas, J and Bralten, J and Galesloot, T and Vasquez, AA and Herms, S and Forstner, AJ and Larsson, H and Breen, G and Asherson, P and Gross-Lesch, S and Lesch, KP and Cichon, S and Gabrielsen, MB and Holmen, OL and Bau, CHD and Buitelaar, J and Kiemeney, L and Faraone, SV and Cormand, B and Franke, B and Reif, A and Haavik, J and Johansson, S}, title = {Exome chip analyses in adult attention deficit hyperactivity disorder}, series = {Translational Psychiatry}, volume = {6}, journal = {Translational Psychiatry}, number = {e923}, doi = {10.1038/tp.2016.196}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168297}, year = {2016}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable childhood-onset neuropsychiatric condition, often persisting into adulthood. The genetic architecture of ADHD, particularly in adults, is largely unknown. We performed an exome-wide scan of adult ADHD using the Illumina Human Exome Bead Chip, which interrogates over 250 000 common and rare variants. Participants were recruited by the International Multicenter persistent ADHD CollaboraTion (IMpACT). Statistical analyses were divided into 3 steps: (1) gene-level analysis of rare variants (minor allele frequency (MAF)<1\%); (2) single marker association tests of common variants (MAF⩾1\%), with replication of the top signals; and (3) pathway analyses. In total, 9365 individuals (1846 cases and 7519 controls) were examined. Replication of the most associated common variants was attempted in 9847 individuals (2077 cases and 7770 controls) using fixed-effects inverse variance meta-analysis. With a Bonferroni-corrected significance level of 1.82E-06, our analyses of rare coding variants revealed four study-wide significant loci: 6q22.1 locus (P=4.46E-08), where NT5DC1 and COL10A1 reside; the SEC23IP locus (P=6.47E-07); the PSD locus (P=7.58E-08) and ZCCHC4 locus (P=1.79E-06). No genome-wide significant association was observed among the common variants. The strongest signal was noted at rs9325032 in PPP2R2B (odds ratio=0.81, P=1.61E-05). Taken together, our data add to the growing evidence of general signal transduction molecules (NT5DC1, PSD, SEC23IP and ZCCHC4) having an important role in the etiology of ADHD. Although the biological implications of these findings need to be further explored, they highlight the possible role of cellular communication as a potential core component in the development of both adult and childhood forms of ADHD.}, language = {en} }