@phdthesis{Lueffe2023, author = {L{\"u}ffe, Teresa Magdalena}, title = {Behavioral and pharmacological validation of genetic zebrafish models for ADHD}, doi = {10.25972/OPUS-25716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257168}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder described in psychiatry today. ADHD arises during early childhood and is characterized by an age-inappropriate level of inattention, hyperactivity, impulsivity, and partially emotional dysregulation. Besides, substantial psychiatric comorbidity further broadens the symptomatic spectrum. Despite advances in ADHD research by genetic- and imaging studies, the etiopathogenesis of ADHD remains largely unclear. Twin studies suggest a heritability of 70-80 \% that, based on genome-wide investigations, is assumed to be polygenic and a mixed composite of small and large, common and rare genetic variants. In recent years the number of genetic risk candidates is continuously increased. However, for most, a biological link to neuropathology and symptomatology of the patient is still missing. Uncovering this link is vital for a better understanding of the disorder, the identification of new treatment targets, and therefore the development of a more targeted and possibly personalized therapy. The present thesis addresses the issue for the ADHD risk candidates GRM8, FOXP2, and GAD1. By establishing loss of function zebrafish models, using CRISPR/Cas9 derived mutagenesis and antisense oligonucleotides, and studying them for morphological, functional, and behavioral alterations, it provides novel insights into the candidate's contribution to neuropathology and ADHD associated phenotypes. Using locomotor activity as behavioral read-out, the present work identified a genetic and functional implication of Grm8a, Grm8b, Foxp2, and Gad1b in ADHD associated hyperactivity. Further, it provides substantial evidence that the function of Grm8a, Grm8b, Foxp2, and Gad1b in activity regulation involves GABAergic signaling. Preliminary indications suggest that the three candidates interfere with GABAergic signaling in the ventral forebrain/striatum. However, according to present and previous data, via different biological mechanisms such as GABA synthesis, transmitter release regulation, synapse formation and/or transcriptional regulation of synaptic components. Intriguingly, this work further demonstrates that the activity regulating circuit, affected upon Foxp2 and Gad1b loss of function, is involved in the therapeutic effect mechanism of methylphenidate. Altogether, the present thesis identified altered GABAergic signaling in activity regulating circuits in, presumably, the ventral forebrain as neuropathological underpinning of ADHD associated hyperactivity. Further, it demonstrates altered GABAergic signaling as mechanistic link between the genetic disruption of Grm8a, Grm8b, Foxp2, and Gad1b and ADHD symptomatology like hyperactivity. Thus, this thesis highlights GABAergic signaling in activity regulating circuits and, in this context, Grm8a, Grm8b, Foxp2, and Gad1b as exciting targets for future investigations on ADHD etiopathogenesis and the development of novel therapeutic interventions for ADHD related hyperactivity. Additionally, thigmotaxis measurements suggest Grm8a, Grm8b, and Gad1b as interesting candidates for prospective studies on comorbid anxiety in ADHD. Furthermore, expression analysis in foxp2 mutants demonstrates Foxp2 as regulator of ADHD associated gene sets and neurodevelopmental disorder (NDD) overarching genetic and functional networks with possible implications for ADHD polygenicity and comorbidity. Finally, with the characterization of gene expression patterns and the generation and validation of genetic zebrafish models for Grm8a, Grm8b, Foxp2, and Gad1b, the present thesis laid the groundwork for future research efforts, for instance, the identification of the functional circuit(s) and biological mechanism(s) by which Grm8a, Grm8b, Foxp2, and Gad1b loss of function interfere with GABAergic signaling and ultimately induce hyperactivity.}, language = {en} } @phdthesis{Peters2023, author = {Peters, Katharina}, title = {Biological Substrates of Waiting Impulsivity in Children and Adolescents with and without ADHD}, doi = {10.25972/OPUS-24636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Focus of the present work were the questions whether and how the concept of waiting impulsivity (WI), defined as the ability to regulate a response in anticipation of reward and measured by the 4-choice serial reaction time task (4-CSRTT), may contribute to our understanding of Attention-Deficit/Hyperactivity Disorder (ADHD) and its neurobiological underpinnings. To address this topic, two studies were conducted: in a first study, the relationship be-tween 4-CSRTT behavioral measures, neural correlates and ADHD symptom domains, i.e. inattention (IA) and hyperactivity/impulsivity (H/I) was explored in a pooled sample of 90 children and adolescents with (n=44) and without (n=46) ADHD diagnosis. As ex-pected, IA was associated with dorsolateral prefrontal brain regions linked with executive functions and attentional control, which was evident on the structural and the functional level. Higher levels of both IA and H/I covaried with decreased activity in the right ven-trolateral prefrontal cortex (PFC), a central structure for response inhibition. Moderation analyses revealed that H/I-related decreased activation in this region did not map linearly on difficulties on the behavioral level: brain activation was a significant predictor of task accuracy only, when H/I symptoms were low/absent but not for clinically relevant ADHD symptoms. Further, H/I was implicated in dysfunctional top-down control of reward eval-uation. Both symptom domains correlated positively with hippocampus (HC) activity in anticipation of reward. In addition, for high H/I symptoms, greater activation in the HC was found to correlate with higher motivation on the behavioral level, indicating that rein-forcement-learning and/or contingency awareness may contribute to altered reward pro-cessing in ADHD patients. In a second study, the possible serotonergic modulation of WI and the ADHD-WI relation-ship was addressed in a sub-sample comprising 86 children and adolescents of study I. The effects of a functional variant in the gene coding for the rate-limiting enzyme in the synthesis of brain serotonin on behavior and structure or function of the WI-network was investigated. Moderation analyses revealed that on the behavioral level, a negative corre-lation between accuracy and IA was found only in GG-homozygotes, whereas no signifi-cant relationship emerged for carriers of the T-allele. This is in line with previous reports of differential effects of serotonergic modulation on attentional performance depending on the presence of ADHD symptoms. A trend-wise interaction effect of genotype and IA for regional volume of the right middle frontal gyrus was interpreted as a hint towards an involvement of the PFC in this relationship, although a more complex mechanism includ-ing developmental effects can be assumed. In addition, interaction effects of genotype and IA were found for brain activation in the amygdala (AMY) und HC during perfor-mance of the 4-CSRTT, while another interaction was found for H/I symptoms and geno-type for right AMY volume. These findings indicate a serotonergic modulation of coding of the emotional value of reward during performance of the 4-CSRTT that varies de-pending on the extent of psychopathology-associated traits. Taken together, it was shown that the 4-CSRTT taps distinct domains of impulsivity with relevance to ADHD symptomatology: (proactive) response inhibition difficulties in relation with anticipation of reward. Furthermore, the two symptom domains, IA and H/I, contrib-ute differently to WI, which emphasizes the need to distinguish both in the research of ADHD. The results of study II emphasized the relevance of serotonergic transmission especially for attentional control and emotional processing. Although the present findings need replication and further refinement in more homogenous age groups, the use of the 4-CSRTT with a dimensional approach is a very promising strategy, which will hopefully extend our understanding of impulsivity-related mental disorders in the future.}, subject = {Aufmerksamkeitsdefizit-Syndrom}, language = {en} }