@article{EwaldGlotzbachSchoonGerdesetal.2014, author = {Ewald, Heike and Glotzbach-Schoon, Evelyn and Gerdes, Antje B. M. and Andreatta, Marta and M{\"u}ller, Mathias and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Delay and trace fear conditioning in a complex virtual learning environment - neural substrates of extinction}, series = {Frontiers in Human Neuroscience}, volume = {8}, journal = {Frontiers in Human Neuroscience}, number = {323}, issn = {1662-5161}, doi = {10.3389/fnhum.2014.00323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116230}, year = {2014}, abstract = {Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC) inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, we compared brain structures involved in the extinction of human delay and trace fear conditioning in a between-subjects-design in an fMRI study. Participants were passively guided through a virtual environment during learning and extinction of conditioned fear. Two different lights served as conditioned stimuli (CS); as unconditioned stimulus (US) a mildly painful electric stimulus was delivered. In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), whereas in the trace conditioning group (TCG) the US was presented 4s after CS+ offset. Both groups showed insular and striatal activation during early extinction, but differed in their prefrontal activation. The vmPFC was mainly activated in the DCG, whereas the TCG showed activation of the dorsolateral prefrontal cortex (dlPFC) during extinction. These results point to different extinction processes in delay and trace conditioning. VmPFC activation during extinction of delay conditioning might reflect the inhibition of the fear response. In contrast, dlPFC activation during extinction of trace conditioning may reflect modulation of working memory processes which are involved in bridging the trace interval and hold information in short term memory.}, language = {en} } @article{HuesteggeRohrssenvanErmingenMarbachetal.2014, author = {Huestegge, Lynn and Rohrßen, Julia and van Ermingen-Marbach, Muna and Pape-Neumann, Julia and Heim, Stefan}, title = {Devil in the details ? Developmental dyslexia and visual long-term memory for details}, series = {Frontiers in Psychology}, volume = {5}, journal = {Frontiers in Psychology}, number = {686}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.00686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115887}, year = {2014}, abstract = {Cognitive theories on causes of developmental dyslexia can be divided into language-specific and general accounts. While the former assume that words are special in that associated processing problems are rooted in language-related cognition (e.g., phonology) deficits, the latter propose that dyslexia is rather rooted in a general impairment of cognitive (e.g., visual and/or auditory) processing streams. In the present study, we examined to what extent dyslexia (typically characterized by poor orthographic representations) may be associated with a general deficit in visual long-term memory (LTM) for details. We compared object- and detail-related visual LTM performance (and phonological skills) between dyslexic primary school children and IQ-, age-, and gender-matched controls. The results revealed that while the overall amount of LTM errors was comparable between groups, dyslexic children exhibited a greater portion of detail-related errors. The results suggest that not only phonological, but also general visual resolution deficits in LTM may play an important role in developmental dyslexia.}, language = {en} } @article{ErlbeckKueblerKotchoubeyetal.2014, author = {Erlbeck, Helena and K{\"u}bler, Andrea and Kotchoubey, Boris and Veser, Sandra}, title = {Task instructions modulate the attentional mode affecting the auditory MMN and the semantic N400}, series = {Frontiers in Human Neuroscience}, volume = {8}, journal = {Frontiers in Human Neuroscience}, number = {654}, doi = {10.3389/fnhum.2014.00654}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115553}, year = {2014}, abstract = {Event-related potentials (ERPs) have been proven to be a useful tool to complement clinical assessment and to detect residual cognitive functions in patients with disorders of consciousness. These ERPs are of ten recorded using passive or unspecific instructions. Patient data obtained this way are then compared to data from healthy participants, which are usually recorded using active instructions. The present study investigates the effect of attentive modulations and particularly the effect of activevs. passive instruction on the ERP components mismatch negativity (MMN) and N400. A sample of 18 healthy participants listened to three auditory paradigms: anoddball, aword priming, and a sentence paradigm. Each paradigm was presented three times with different instructions: ignoring auditory stimuli, passive listening, and focused attention on the auditory stimuli. After each task, the participants indicated their subjective effort. The N400 decreased from the focused task to the passive task, and was extinct in the ignore task. The MMN exhibited higher amplitudes in the focused and passive task compared to the ignore task. The data indicate an effect of attention on the supratemporal component of the MMN. Subjective effort was equally high in the passive and focused tasks but reduced in the ignore task. We conclude that passive listening during EEG recording is stressful and attenuates ERPs, which renders the interpretation of the results obtained in such conditions difficult.}, language = {en} } @article{BlechertMeuleBuschetal.2014, author = {Blechert, Jens and Meule, Adrian and Busch, Niko A. and Ohla, Kathrin}, title = {Food-pics: an image database for experimental research on eating and appetite}, series = {Frontiers in Psychology}, volume = {5}, journal = {Frontiers in Psychology}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.00617}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115987}, pages = {617}, year = {2014}, abstract = {Our current environment is characterized by the omnipresence of food cues. The sight and smell of real foods, but also graphically depictions of appetizing foods, can guide our eating behavior, for example, by eliciting food craving and influencing food choice. The relevance of visual food cues on human information processing has been demonstrated by a growing body of studies employing food images across the disciplines of psychology, medicine, and neuroscience. However, currently used food image sets vary considerably across laboratories and image characteristics (contrast, brightness, etc.) and food composition (calories, macronutrients, etc.) are often unspecified. These factors might have contributed to some of the inconsistencies of this research. To remedy this, we developed food-pics, a picture database comprising 568 food images and 315 non-food images along with detailed meta-data. A total of N = 1988 individuals with large variance in age and weight from German speaking countries and North America provided normative ratings of valence, arousal, palatability, desire to eat, recognizability and visual complexity. Furthermore, data on macronutrients (g), energy density (kcal), and physical image characteristics (color composition, contrast, brightness, size, complexity) are provided. The food-pics image database is freely available under the creative commons license with the hope that the set will facilitate standardization and comparability across studies and advance experimental research on the determinants of eating behavior. Read F}, language = {en} } @article{PetrasekProkopovaSladeketal.2014, author = {Petrasek, Tomas and Prokopova, Iva and Sladek, Martin and Weissova, Kamila and Vojtechova, Iveta and Bahnik, Stepan and Zemanova, Anna and Sch{\"o}nig, Kai and Berger, Stefan and Tews, Bjoern and Bartsch, Dusan and Schwab, Martin E. and Sumova, Alena and Stuchlik, Ales}, title = {Nogo-A-deficient transgenic rats show deficits in higher cognitive functions, decreased anxiety, and altered circadian activity patterns}, series = {Frontiers in Behavioral Neuroscience}, volume = {8}, journal = {Frontiers in Behavioral Neuroscience}, number = {90}, doi = {10.3389/fnbeh.2014.00090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117073}, year = {2014}, abstract = {Decreased levels of Nogo-A-dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knockdown laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity, and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A-deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A knockout rats and their circadian period (tau) did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality, and activity patterns.}, language = {en} } @article{GerdesWieserAlpers2014, author = {Gerdes, Antje B. M. and Wieser, Matthias J. and Alpers, Georg W.}, title = {Emotional pictures and sounds: a review of multimodal interactions of emotion cues in multiple domains}, series = {Frontiers in Psychology}, volume = {5}, journal = {Frontiers in Psychology}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.01351}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114548}, pages = {1351}, year = {2014}, abstract = {In everyday life, multiple sensory channels jointly trigger emotional experiences and one channel may alter processing in another channel. For example, seeing an emotional facial expression and hearing the voice's emotional tone will jointly create the emotional experience. This example, where auditory and visual input is related to social communication, has gained considerable attention by researchers. However, interactions of visual and auditory emotional information are not limited to social communication but can extend to much broader contexts including human, animal, and environmental cues. In this article, we review current research on audiovisual emotion processing beyond face-voice stimuli to develop a broader perspective on multimodal interactions in emotion processing. We argue that current concepts of multimodality should be extended in considering an ecologically valid variety of stimuli in audiovisual emotion processing. Therefore, we provide an overview of studies in which emotional sounds and interactions with complex pictures of scenes were investigated. In addition to behavioral studies, we focus on neuroimaging, electro- and peripher-physiological findings. Furthermore, we integrate these findings and identify similarities or differences. We conclude with suggestions for future research.}, language = {en} } @article{MartensBenschHalderetal.2014, author = {Martens, Suzanne and Bensch, Michael and Halder, Sebastian and Hill, Jeremy and Nijboer, Femke and Ramos-Murguialday, Ander and Schoelkopf, Bernhard and Birbaumer, Niels and Gharabaghi, Alireza}, title = {Epidural electrocorticography for monitoring of arousal in locked-in state}, series = {Frontiers in Human Neuroscience}, volume = {8}, journal = {Frontiers in Human Neuroscience}, doi = {10.3389/fnhum.2014.00861}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114863}, pages = {861}, year = {2014}, abstract = {Electroencephalography (EEG) often fails to assess both the level (i.e., arousal) and the content (i.e., awareness) of pathologically altered consciousness in patients without motor responsiveness. This might be related to a decline of awareness, to episodes of low arousal and disturbed sleep patterns, and/or to distorting and attenuating effects of the skull and intermediate tissue on the recorded brain signals. Novel approaches are required to overcome these limitations. We introduced epidural electrocorticography (ECoG) for monitoring of cortical physiology in a late-stage amytrophic lateral sclerosis patient in completely locked-in state (CLIS) Despite long-term application for a period of six months, no implant related complications occurred. Recordings from the left frontal cortex were sufficient to identify three arousal states. Spectral analysis of the intrinsic oscillatory activity enabled us to extract state-dependent dominant frequencies at <4, similar to 7 and similar to 20 Hz, representing sleep-like periods, and phases of low and elevated arousal, respectively. In the absence of other biomarkers, ECoG proved to be a reliable tool for monitoring circadian rhythmicity, i.e., avoiding interference with the patient when he was sleeping and exploiting time windows of responsiveness. Moreover, the effects of interventions addressing the patient's arousal, e.g., amantadine medication, could be evaluated objectively on the basis of physiological markers, even in the absence of behavioral parameters. Epidural ECoG constitutes a feasible trade-off between surgical risk and quality of recorded brain signals to gain information on the patient's present level of arousal. This approach enables us to optimize the timing of interactions and medical interventions, all of which should take place when the patient is in a phase of high arousal. Furthermore, avoiding low responsiveness periods will facilitate measures to implement alternative communication pathways involving brain-computer interfaces (BCI).}, language = {en} } @article{RealKotchoubeyKuebler2014, author = {Real, Ruben G. L. and Kotchoubey, Boris and K{\"u}bler, Andrea}, title = {Studentized continuous wavelet transform (t-CWT) in the analysis of individual ERPs: real and simulated EEG data}, doi = {10.3389/fnins.2014.00279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113581}, year = {2014}, abstract = {This study aimed at evaluating the performance of the Studentized Continuous Wavelet Transform (t-CWT) as a method for the extraction and assessment of event-related brain potentials (ERP) in data from a single subject. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of the t-CWT were assessed and compared to a variety of competing procedures using simulated EEG data at six low signal-to-noise ratios. Results show that the t-CWT combines high sensitivity and specificity with favorable PPV and NPV. Applying the t-CWT to authentic EEG data obtained from 14 healthy participants confirmed its high sensitivity. The t-CWT may thus be well suited for the assessment of weak ERPs in single-subject settings.}, language = {en} } @article{KirschKoenigsteinKunde2014, author = {Kirsch, Wladimir and K{\"o}nigstein, Elisabeth and Kunde, Wilfried}, title = {Action feedback affects the perception of action-related objects beyond actual action success}, doi = {10.3389/fpsyg.2014.00017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112670}, year = {2014}, abstract = {Successful object-oriented action typically increases the perceived size of aimed target objects. This phenomenon has been assumed to reflect an impact of an actor's current action ability on visual perception. The actual action ability and the explicit knowledge of action outcome, however, were confounded in previous studies. The present experiments aimed at disentangling these two factors. Participants repeatedly tried to hit a circular target varying in size with a stylus movement under restricted feedback conditions. After each movement they were explicitly informed about the success in hitting the target and were then asked to judge target size. The explicit feedback regarding movement success was manipulated orthogonally to actual movement success. The results of three experiments indicated the participants' bias to judge relatively small targets as larger and relatively large targets as smaller after explicit feedback of failure than after explicit feedback of success. This pattern was independent of the actual motor performance, suggesting that the actors' evaluations of motor actions may bias perception of target objects in itself.}, language = {en} } @article{PohlKundeGanzetal.2014, author = {Pohl, Carsten and Kunde, Wilfried and Ganz, Thomas and Conzelmann, Annette and Pauli, Paul and Kiesel, Andrea}, title = {Gaming to see: action video gaming is associated with enhanced processing of masked stimuli}, doi = {10.3389/fpsyg.2014.00070}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112681}, year = {2014}, abstract = {Recent research revealed that action video game players outperform non-players in a wide range of attentional, perceptual and cognitive tasks. Here we tested if expertise in action video games is related to differences regarding the potential of shortly presented stimuli to bias behavior. In a response priming paradigm, participants classified four animal pictures functioning as targets as being smaller or larger than a reference frame. Before each target, one of the same four animal pictures was presented as a masked prime to influence participants' responses in a congruent or incongruent way. Masked primes induced congruence effects, that is, faster responses for congruent compared to incongruent conditions, indicating processing of hardly visible primes. Results also suggested that action video game players showed a larger congruence effect than non-players for 20 ms primes, whereas there was no group difference for 60 ms primes. In addition, there was a tendency for action video game players to detect masked primes for some prime durations better than non-players. Thus, action video game expertise may be accompanied by faster and more efficient processing of shortly presented visual stimuli.}, language = {en} }