@article{ZaitsevaHoffmannOttoetal.2022, author = {Zaitseva, Olena and Hoffmann, Annett and Otto, Christoph and Wajant, Harald}, title = {Targeting fibroblast growth factor (FGF)-inducible 14 (Fn14) for tumor therapy}, series = {Frontiers in Pharmacology}, volume = {13}, journal = {Frontiers in Pharmacology}, issn = {1663-9812}, doi = {10.3389/fphar.2022.935086}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290238}, year = {2022}, abstract = {Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) and is activated by its ligand TNF-like weak inducer of apoptosis (TWEAK). The latter occurs as a homotrimeric molecule in a soluble and a membrane-bound form. Soluble TWEAK (sTWEAK) activates the weakly inflammatory alternative NF-κB pathway and sensitizes for TNF-induced cell death while membrane TWEAK (memTWEAK) triggers additionally robust activation of the classical NF-κB pathway and various MAP kinase cascades. Fn14 expression is limited in adult organisms but becomes strongly induced in non-hematopoietic cells by a variety of growth factors, cytokines and physical stressors (e.g., hypoxia, irradiation). Since all these Fn14-inducing factors are frequently also present in the tumor microenvironment, Fn14 is regularly found to be expressed by non-hematopoietic cells of the tumor microenvironment and most solid tumor cells. In general, there are three possibilities how the tumor-Fn14 linkage could be taken into consideration for tumor therapy. First, by exploitation of the cancer associated expression of Fn14 to direct cytotoxic activities (antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxic payloads, CAR T-cells) to the tumor, second by blockade of potential protumoral activities of the TWEAK/Fn14 system, and third, by stimulation of Fn14 which not only triggers proinflammtory activities but also sensitizes cells for apoptotic and necroptotic cell death. Based on a brief description of the biology of the TWEAK/Fn14 system and Fn14 signaling, we discuss the features of the most relevant Fn14-targeting biologicals and review the preclinical data obtained with these reagents. In particular, we address problems and limitations which became evident in the preclinical studies with Fn14-targeting biologicals and debate possibilities how they could be overcome.}, language = {en} } @article{OttoKastnerSchmidtetal.2022, author = {Otto, Christoph and Kastner, Carolin and Schmidt, Stefanie and Uttinger, Konstantin and Baluapuri, Apoorva and Denk, Sarah and Rosenfeldt, Mathias T. and Rosenwald, Andreas and Roehrig, Florian and Ade, Carsten P. and Schuelein-Voelk, Christina and Diefenbacher, Markus E. and Germer, Christoph-Thomas and Wolf, Elmar and Eilers, Martin and Wiegering, Armin}, title = {RNA polymerase I inhibition induces terminal differentiation, growth arrest, and vulnerability to senolytics in colorectal cancer cells}, series = {Molecular Oncology}, volume = {16}, journal = {Molecular Oncology}, number = {15}, doi = {10.1002/1878-0261.13265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312806}, pages = {2788-2809}, year = {2022}, abstract = {Ribosomal biogenesis and protein synthesis are deregulated in most cancers, suggesting that interfering with translation machinery may hold significant therapeutic potential. Here, we show that loss of the tumor suppressor adenomatous polyposis coli (APC), which constitutes the initiating event in the adenoma carcinoma sequence for colorectal cancer (CRC), induces the expression of RNA polymerase I (RNAPOL1) transcription machinery, and subsequently upregulates ribosomal DNA (rDNA) transcription. Targeting RNAPOL1 with a specific inhibitor, CX5461, disrupts nucleolar integrity, and induces a disbalance of ribosomal proteins. Surprisingly, CX5461-induced growth arrest is irreversible and exhibits features of senescence and terminal differentiation. Mechanistically, CX5461 promotes differentiation in an MYC-interacting zinc-finger protein 1 (MIZ1)- and retinoblastoma protein (Rb)-dependent manner. In addition, the inhibition of RNAPOL1 renders CRC cells vulnerable towards senolytic agents. We validated this therapeutic effect of CX5461 in murine- and patient-derived organoids, and in a xenograft mouse model. These results show that targeting ribosomal biogenesis together with targeting the consecutive, senescent phenotype using approved drugs is a new therapeutic approach, which can rapidly be transferred from bench to bedside.}, language = {en} } @article{MetznerHerzogHeckeletal.2022, author = {Metzner, Valentin and Herzog, Gloria and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and Otto, Christoph and Fassnacht, Martin and Geier, Andreas and Seyfried, Florian and Dischinger, Ulrich}, title = {Liraglutide + PYY\(_{3-36}\) combination therapy mimics effects of Roux-en-Y bypass on early NAFLD whilst lacking-behind in metabolic improvements}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm11030753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255244}, year = {2022}, abstract = {Background: Treatment options for NAFLD are still limited. Bariatric surgery, such as Roux-en-Y gastric bypass (RYGB), has been shown to improve metabolic and histologic markers of NAFLD. Glucagon-like-peptide-1 (GLP-1) analogues lead to improvements in phase 2 clinical trials. We directly compared the effects of RYGB with a treatment using liraglutide and/or peptide tyrosine tyrosine 3-36 (PYY\(_{3-36}\)) in a rat model for early NAFLD. Methods: Obese male Wistar rats (high-fat diet (HFD)-induced) were randomized into the following treatment groups: RYGB, sham-operation (sham), liraglutide (0.4 mg/kg/day), PYY\(_{3-36}\) (0.1 mg/kg/day), liraglutide+PYY\(_{3-36}\), and saline. After an observation period of 4 weeks, liver samples were histologically evaluated, ELISAs and RNA sequencing + RT-qPCRs were performed. Results: RYGB and liraglutide+PYY\(_{3-36}\) induced a similar body weight loss and, compared to sham/saline, marked histological improvements with significantly less steatosis. However, only RYGB induced significant metabolic improvements (e.g., adiponectin/leptin ratio 18.8 ± 11.8 vs. 2.4 ± 1.2 in liraglutide+PYY\(_{3-36}\)- or 1.4 ± 0.9 in sham-treated rats). Furthermore, RNA sequencing revealed a high number of differentially regulated genes in RYGB treated animals only. Conclusions: The combination therapy of liraglutide+PYY\(_{3-36}\) partly mimics the positive effects of RYGB on weight reduction and on hepatic steatosis, while its effects on metabolic function lack behind RYGB.}, language = {en} }