@article{SailerWiedemannStraussetal.2019, author = {Sailer, Clara Odilia and Wiedemann, Sophia Julia and Strauss, Konrad and Schnyder, Ingeborg and Fenske, Wiebke Kristin and Christ-Crain, Mirjam}, title = {Markers of systemic inflammation in response to osmotic stimulus in healthy volunteers}, series = {Endocrine Connections}, volume = {8}, journal = {Endocrine Connections}, number = {9}, doi = {10.1530/EC-19-0280}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227204}, pages = {1282-1287}, year = {2019}, abstract = {Osmotic stimulus or stress results in vasopressin release. Animal and human in vitro studies have shown that inflammatory parameters, such as interle ukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha), increase in parallel in the central nervous system and bronchial, corneal or intestinal epithelial cell lines in response to osmotic stimulus. Whether osmotic stimulus directly causes a systemic inflammatory response in humans is unknown. We therefore investigated the influence of osmotic stimulus on circulatory markers of systemic inflammation in healthy volunteers. In this prospective cohort study, 44 healthy volunteers underwent a standardized test protocol with an osmotic stimulus leading into the hyperosmotic/hypernatremic range (serum sodium >= 150 mmol/L) by hypertonic saline infusion. Copeptin - a marker indicating vasopressin activity - serum sodium and osmolality, plasma IL-8 and TNF-alpha were measured at baseline and directly after osmotic stimulus. Median (range) serum sodium increased from 141 mmol/L (136, 147) to 151 mmol/L (145, 154) (P < 0.01), serum osmolality increased from 295 mmol/L (281, 306) to 315 mmol/L (304, 325) (P < 0.01). Median (range) copeptin increased from 4.3 pg/L (1.1, 21.4) to 28.8 pg/L (19.9, 43.4) (P < 0.01). Median (range) IL-8 levels showed a trend to decrease from 0.79 pg/mL (0.37, 1.6) to 0.7 pg/mL (0.4, 1.9) (P < 0.09) and TNF-alpha levels decreased from 0.53 pg/mL (0.11, 1.1) to 0.45 pg/mL (0.1 2, 0.97) (P < 0.036). Contrary to data obtained in vitro, circulating proinflammatory cytokines tend to or decrease in human plasma after osmotic stimulus. In this study, osmotic stimulus does not increase circulating markers of systemic inflammation.}, subject = {Hyperosmotic Stress}, language = {en} } @article{ScheerKremplKallfassetal.2014, author = {Scheer, Sebastian and Krempl, Christine and Kallfass, Carsten and Frey, Stefanie and Jakob, Thilo and Mouahid, Gabriel and Mone, Helene and Schmitt-Graeff, Anette and Staeheli, Peter and Lamers, Marinus C.}, title = {S-mansoni Bolsters Anti-Viral Immunity in the Murine Respiratory Tract}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {11}, issn = {1932-6203}, doi = {10.1371/journal.pone.0112469}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114723}, pages = {e112469}, year = {2014}, abstract = {The human intestinal parasite Schistosoma mansoni causes a chronic disease, schistosomiasis or bilharzia. According to the current literature, the parasite induces vigorous immune responses that are controlled by Th2 helper cells at the expense of Th1 helper cells. The latter cell type is, however, indispensable for anti-viral immune responses. Remarkably, there is no reliable literature among 230 million patients worldwide describing defective anti-viral immune responses in the upper respiratory tract, for instance against influenza A virus or against respiratory syncitial virus (RSV). We therefore re-examined the immune response to a human isolate of S. mansoni and challenged mice in the chronic phase of schistosomiasis with influenza A virus, or with pneumonia virus of mice (PVM), a mouse virus to model RSV infections. We found that mice with chronic schistosomiasis had significant, systemic immune responses induced by Th1, Th2, and Th17 helper cells. High serum levels of TNF-alpha, IFN-gamma, IL-5, IL-13, IL-2, IL-17, and GM-CSF were found after mating and oviposition. The lungs of diseased mice showed low-grade inflammation, with goblet cell hyperplasia and excessive mucus secretion, which was alleviated by treatment with an anti-TNF-alpha agent (Etanercept). Mice with chronic schistosomiasis were to a relative, but significant extent protected from a secondary viral respiratory challenge. The protection correlated with the onset of oviposition and TNF-alpha-mediated goblet cell hyperplasia and mucus secretion, suggesting that these mechanisms are involved in enhanced immune protection to respiratory viruses during chronic murine schistosomiasis. Indeed, also in a model of allergic airway inflammation mice were protected from a viral respiratory challenge with PVM.}, language = {en} } @article{NonoPletinckxLutzetal.2012, author = {Nono, Justin Komguep and Pletinckx, Katrien and Lutz, Manfred B. and Brehm, Klaus}, title = {Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {2}, doi = {10.1371/journal.pntd.0001516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134280}, pages = {e1516}, year = {2012}, abstract = {Background: Alveolar echinococcosis, caused by Echinococcus multilocularis larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that E. multilocularis, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action. Methodology/Principal Findings: We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with Echinococcus primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naive T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3+ T cells in vitro. Conclusions: This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of E. multilocularis is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4+CD25+Foxp3+ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.}, language = {en} }