@article{PereiraTrivanovićStahlhutetal.2022, author = {Pereira, Ana Rita and Trivanović, Drenka and Stahlhut, Philipp and Rudert, Maximilian and Groll, J{\"u}rgen and Herrmann, Marietta}, title = {Preservation of the na{\"i}ve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix}, series = {Journal of Tissue Engineering}, volume = {13}, journal = {Journal of Tissue Engineering}, doi = {10.1177/20417314221074453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268835}, pages = {1-12}, year = {2022}, abstract = {The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their na{\"i}ve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the na{\"i}ve features of BM-MSC.}, language = {en} } @article{AlepeeBahinskiDaneshianetal.2014, author = {Alepee, Natalie and Bahinski, Anthony and Daneshian, Mardas and De Weyer, Bart and Fritsche, Ellen and Goldberg, Alan and Hansmann, Jan and Hartung, Thomas and Haycock, John and Hogberg, Helena T. and Hoelting, Lisa and Kelm, Jens M. and Kadereit, Suzanne and McVey, Emily and Landsiedel, Robert and Leist, Marcel and L{\"u}bberstedt, Marc and Noor, Fozia and Pellevoisin, Christian and Petersohn, Dirk and Pfannenbecker, Uwe and Reisinger, Kerstin and Ramirez, Tzutzuy and Rothen-Rutishauser, Barbara and Sch{\"a}fer-Korting, Monika and Zeilinger, Katrin and Zurich, Marie-Gabriele}, title = {State-of-the-Art of 3D Cultures (Organs-on-a-Chip) in Safety Testing and Pathophysiology}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {31}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {4}, doi = {2014; http://dx.doi.org/10.14573/altex1406111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117826}, pages = {441-477}, year = {2014}, abstract = {Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs liver, lung, skin, brain are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.}, language = {en} }