@phdthesis{Fleckenstein2020, author = {Fleckenstein, Christoph Thomas}, title = {Conception and detection of exotic quantum matter in mesoscopic systems}, doi = {10.25972/OPUS-21284}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212847}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this thesis we discuss the potential of nanodevices based on topological insulators. This novel class of matter is characterized by an insulating bulk with simultaneously conducting boundaries. To lowest order, the states that are evoking the conducting behavior in TIs are typically described by a Dirac theory. In the two-dimensional case, together with time- reversal symmetry, this implies a helical nature of respective states. Then, interesting physics appears when two such helical edge state pairs are brought close together in a two-dimensional topological insulator quantum constriction. This has several advantages. Inside the constriction, the system obeys essentially the same number of fermionic fields as a conventional quantum wire, however, it possesses more symmetries. Moreover, such a constriction can be naturally contacted by helical probes, which eventually allows spin- resolved transport measurements. We use these intriguing properties of such devices to predict the formation and detection of several profound physical effects. We demonstrate that narrow trenches in quantum spin Hall materials - a structure we coin anti-wire - are able to show a topological super- conducting phase, hosting isolated non-Abelian Majorana modes. They can be detected by means of a simple conductance experiment using a weak coupling to passing by helical edge states. The presence of Majorana modes implies the formation of unconventional odd-frequency superconductivity. Interestingly, however, we find that regardless of the presence or absence of Majoranas, related (superconducting) devices possess an uncon- ventional odd-frequency superconducting pairing component, which can be associated to a particular transport channel. Eventually, this enables us to prove the existence of odd- frequency pairing in superconducting quantum spin Hall quantum constrictions. The symmetries that are present in quantum spin Hall quantum constrictions play an essen- tial role for many physical effects. As distinguished from quantum wires, quantum spin Hall quantum constrictions additionally possess an inbuilt charge-conjugation symmetry. This can be used to form a non-equilibrium Floquet topological phase in the presence of a time-periodic electro-magnetic field. This non-equilibrium phase is accompanied by topological bound states that are detectable in transport characteristics of the system. Despite single-particle effects, symmetries are particularly important when electronic in- teractions are considered. As such, charge-conjugation symmetry implies the presence of a Dirac point, which in turn enables the formation of interaction induced gaps. Unlike single-particle gaps, interaction induced gaps can lead to large ground state manifolds. In combination with ordinary superconductivity, this eventually evokes exotic non-Abelian anyons beyond the Majorana. In the present case, these interactions gaps can even form in the weakly interacting regime (which is rather untypical), so that the coexistence with superconductivity is no longer contradictory. Eventually this leads to the simultaneous presence of a Z4 parafermion and a Majorana mode bound at interfaces between quantum constrictions and superconducting regions.}, subject = {Kondensierte Materie}, language = {en} } @phdthesis{Hofmann2020, author = {Hofmann, Johannes Stephan}, title = {On the interplay of topology and interaction: A quantum Monte Carlo study}, doi = {10.25972/OPUS-20507}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205071}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Adding interactions to topological (non-)trivial free fermion systems can in general have four different effects: (i) In symmetry protected topological band insulators, the correlations may lead to the spontaneous breaking of some protecting symmetries by long-range order that gaps the topological boundary modes. (ii) In free fermion (semi-)metal, the interaction could vice versa also generate long-range order that in turn induces a topological mass term and thus generates non-trivial phases dynamically. (iii) Correlation might reduce the topological classification of free fermion systems by allowing adiabatic deformations between states of formerly distinct phases. (iv) Interaction can generate long-range entangled topological order in states such as quantum spin liquids or fractional quantum Hall states that cannot be represented by non-interacting systems. During the course of this thesis, we use numerically exact quantum Monte Carlo algorithms to study various model systems that (potentially) represent one of the four scenarios, respectively. First, we investigate a two-dimensional \$d_{xy}\$-wave, spin-singlet superconductor, which is relevant for high-\$T_c\$ materials such as the cuprates. This model represents nodal topological superconductors and exhibits chiral flat-band edge states that are protected by time-reversal and translational invariance. We introduce the conventional Hubbard interaction along the edge in order to study their stability with respect to correlations and find ferromagnetic order in case of repulsive interaction as well as charge-density-wave order and/or additional \$i\$s-wave pairing for attractive couplings. A mean-field analysis that, for the first time, is formulated in terms of the Majorana edge modes suggests that any order has normal and superconducting contributions. For example, the ferromagnetic order appears in linear superposition with triplet pairing. This finding is well confirmed by the numerically exact quantum Monte Carlo investigation. Second, we consider spinless electrons on a two-dimensional Lieb lattice that are subject to nearest-neighbor Coulomb repulsion. The low energy modes of the free fermion part constitute a spin-\$1\$ Dirac cone that might be gapped by several mass terms. One option breaks time-reversal symmetry and generates a topological Chern insulator, which mainly motivated this study. We employ two flavors of quantum Monte Carlo methods and find instead the formation of charge-density-wave order that breaks particle-hole symmetry. Additionally, due to sublattices of unequal size in Lieb lattices, this induces a finite chemical potential that drives the system away from half-filling. We argue that this mechanism potentially extends the range of solvable models with finite doping by coupling the Lieb lattice to the target system of interest. Third, we construct a system with four layers of a topological insulators and interlayer correlation that respects one independent time-reversal and a unitary \$\mathbb{Z}_2\$ symmetry. Previous studies claim a reduced topological classification from \$\mathbb{Z}\$ to \$\mathbb{Z}_4\$, for example by gapping out degenerate zero modes in topological defects once the correlation term is designed properly. Our interaction is chosen according to this analysis such that there should exist an adiabatic deformation between states whose topological invariant differs by \$\Delta w=\pm4\$ in the free fermion classification. We use a projective quantum Monte Carlo algorithm to determine the ground-state phase diagram and find a symmetry breaking regime, in addition to the non-interacting semi-metal, that separates the free fermion insulators. Frustration reduces the size of the long-range ordered region until it is replaced by a first order phase transition. Within the investigated range of parameters, there is no adiabatic path deforming the formerly distinct free fermion states into each other. We conclude that the prescribed reduction rules, which often use the bulk-boundary correspondence, are necessary but not sufficient and require a more careful investigation. Fourth, we study conduction electron on a honeycomb lattice that form a Dirac semi-metal Kondo coupled to spin-1/2 degrees of freedom on a Kagome lattice. The local moments are described by a variant of the Balents-Fisher-Girvin model that has been shown to host a ferromagnetic phase and a \$\mathbb{Z}_2\$ spin liquid at strong frustration. Here, we report the first numerical exact quantum Monte Carlo simulation of the Kondo-coupled system that does not exhibit the negative-sign problem. When the local moments form a ferromagnet, the Kondo coupling induces an anti-ferromagnetic mass term in the conduction-electron system. At large frustration, the Dirac cone remains massless and the spin system forms a \$\mathbb{Z}_2\$ spin liquid. Owing to the odd number of spins per unit cell, this constitutes a non-Fermi liquid that violates Luttinger's theorem which relates the Fermi volume to the particle density in a Fermi liquid. This phase is a specific realization of the so called 'fractional Fermi liquid` as it has been first introduced in the context of heavy fermion models.}, subject = {Monte-Carlo-Simulation}, language = {en} } @phdthesis{Beyl2020, author = {Beyl, Stefan}, title = {Hybrid Quantum Monte Carlo for Condensed Matter Models}, doi = {10.25972/OPUS-19122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191225}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this thesis we consider the hybrid quantum Monte Carlo method for simulations of the Hubbard and Su-Schrieffer-Heeger model. In the first instance, we discuss the hybrid quantum Monte Carlo method for the Hubbard model on a square lattice. We point out potential ergodicity issues and provide a way to circumvent them by a complexification of the method. Furthermore, we compare the efficiency of the hybrid quantum Monte Carlo method with a well established determinantal quantum Monte Carlo method for simulations of the half-filled Hubbard model on square lattices. One reason why the hybrid quantum Monte Carlo method loses the comparison is that we do not observe the desired sub-quadratic scaling of the numerical effort. Afterwards we present a formulation of the hybrid quantum Monte Carlo method for the Su-Schrieffer-Heeger model in two dimensions. Electron-phonon models like this are in general very hard to simulate using other Monte Carlo methods in more than one dimensions. It turns out that the hybrid quantum Monte Carlo method is much better suited for this model . We achieve favorable scaling properties and provide a proof of concept. Subsequently, we use the hybrid quantum Monte Carlo method to investigate the Su-Schrieffer-Heeger model in detail at half-filling in two dimensions. We present numerical data for staggered valence bond order at small phonon frequencies and an antiferromagnetic order at high frequencies. Due to an O(4) symmetry the antiferromagnetic order is connected to a superconducting charge density wave. Considering the Su-Schrieffer-Heeger model without tight-binding hopping reveals an additional unconstrained Z_2 gauge theory. In this case, we find indications for π-fluxes and a possible Z_2 Dirac deconfined phase as well as for a columnar valence bond ordered state at low phonon energies. In our investigations of the several phase transitions we discuss the different possibilities for the underlying mechanisms and reveal first insights into a rich phase diagram.}, subject = {Monte-Carlo-Simulation}, language = {en} } @phdthesis{Lundt2020, author = {Lundt, Felix Janosch Peter}, title = {Superconducting Hybrids at the Quantum Spin Hall Edge}, doi = {10.25972/OPUS-21642}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216421}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {This Thesis explores hybrid structures on the basis of quantum spin Hall insulators, and in particular the interplay of their edge states and superconducting and magnetic order. Quantum spin Hall insulators are one example of topological condensed matter systems, where the topology of the bulk bands is the key for the understanding of their physical properties. A remarkable consequence is the appearance of states at the boundary of the system, a phenomenon coined bulk-boundary correspondence. In the case of the two-dimensional quantum spin Hall insulator, this is manifested by so-called helical edge states of counter-propagating electrons with opposite spins. They hold great promise, \emph{e.g.}, for applications in spintronics -- a paradigm for the transmission and manipulation of information based on spin instead of charge -- and as a basis for quantum computers. The beginning of the Thesis consists of an introduction to one-dimensional topological superconductors, which illustrates basic concepts and ideas. In particular, this includes the topological distinction of phases and the accompanying appearance of Majorana modes at their ends. Owing to their topological origin, Majorana modes potentially are essential building-blocks for topological quantum computation, since they can be exploited for protected operations on quantum bits. The helical edge states of quantum spin Hall insulators in conjunction with \$s\$-wave superconductivity and magnetism are a suitable candidate for the realization of a one-dimensional topological superconductor. Consequently, this Thesis investigates the conditions in which Majorana modes can appear. Typically, this happens between regions subjected to either only superconductivity, or to both superconductivity and magnetism. If more than one superconductor is present, the phase difference is of paramount importance, and can even be used to manipulate and move Majorana modes. Furthermore, the Thesis addresses the effects of the helical edge states on the anomalous correlation functions characterizing proximity-induced superconductivity. It is found that helicity and magnetism profoundly enrich their physical structure and lead to unconventional, exotic pairing amplitudes. Strikingly, the nonlocal correlation functions can be connected to the Majorana bound states within the system. Finally, a possible thermoelectric device on the basis of hybrid systems at the quantum spin Hall edge is discussed. It utilizes the peculiar properties of the proximity-induced superconductivity in order to create spin-polarized Cooper pairs from a temperature bias. Cooper pairs with finite net spin are the cornerstone of superconducting spintronics and offer tremendous potential for efficient information technologies.}, subject = {Mesoskopisches System}, language = {en} } @phdthesis{Ruff2013, author = {Ruff, Andreas}, title = {On the importance of electronic correlations in potassium-doped organic semiconductors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83635}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The present thesis is concerned with the impact of alkali metal-doping on the electronic structure of semiconducting organic thin films. The organic molecular systems which have been studied are the polycyclic aromatic hydrocarbons picene, pentacene, and coronene. Motivated by reports about exceptional behavior like superconductivity and electronic correlations of their alkali metal-doped compounds, high quality films fabricated from the above named molecules have been studied. The electronic structure of the pristine materials and their doped compounds has been investigated using photoelectron spectroscopy. Core level and valence band studies of undoped films yield excellent photoemission spectra agreeing with or even outperforming previously reported data from the literature. Alkali metal-doping manifests itself in a uniform manner in the electronic structure for all probed samples: Opposed to reports from the literature about metallicity and even superconductivity in alkali metal-doped picene, pentacene, and coronene, all films exhibit insulating nature with an energy gap of the order of one electron-volt. Remarkably, this is independent of the doping concentration and the type of dopant, i.e., potassium, cesium, or sodium. Based on the interplay between narrow bandwidths in organic semiconductors and sufficiently high on-molecule Coulomb repulsion, the non-metallicity is attributed to the strong influence of electronic correlations leading to the formation of a Mott insulator. In the case of picene, this is consolidated by calculations using a combination of density functional theory and dynamical mean-field theory. Beyond the extensive considerations regarding electronic correlations, further intriguing aspects have been observed. The deposition of thin picene films leads to the formation of a non-equilibrium situation between substrate and film surface. Here, the establishment of a homogeneous chemical potential is hampered due to the only weak van der Waals-interactions between the molecular layers in the films. Consequently, spectral weight is measurable above the reference chemical potential in photoemission. Furthermore, it has been found that the acceptance of additional electrons in pentacene is limited. While picene and coronene are able to host up to three extra electrons, in pentacene the limit is already reached for one electron. Finally, further extrinsic effects, coming along with alkali metal-doping, have been scrutinized. The oxidation of potassium atoms induced by the reaction with molecular oxygen in the residual gas of the ultra-high vacuum system turned out to significantly influence the electronic structure of alkali metal-doped picene and coronene. Moreover, also the applied X-ray and UV irradiation caused a certain impact on the photoemission spectra. Surprisingly, both effects did not play a role in the studies of potassium-doped pentacene.}, subject = {Organischer Halbleiter}, language = {en} }