@article{WeissenbergerWagenbrennerNickeletal.2023, author = {Weißenberger, Manuel and Wagenbrenner, Mike and Nickel, Joachim and Ahlbrecht, Rasmus and Blunk, Torsten and Steinert, Andre F. and Gilbert, Fabian}, title = {Comparative in vitro treatment of mesenchymal stromal cells with GDF-5 and R57A induces chondrogenic differentiation while limiting chondrogenic hypertrophy}, series = {Journal of Experimental Orthopaedics}, volume = {10}, journal = {Journal of Experimental Orthopaedics}, doi = {10.1186/s40634-023-00594-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357770}, year = {2023}, abstract = {Purpose Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. Methods Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. Results Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. Conclusions R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1.}, language = {en} } @article{FrischholzBerberichBoecketal.2020, author = {Frischholz, Sebastian and Berberich, Oliver and B{\"o}ck, Thomas and Meffert, Rainer H. and Blunk, Torsten}, title = {Resveratrol counteracts IL-1β-mediated impairment of extracellular matrix deposition in 3D articular chondrocyte constructs}, series = {Journal of Tissue Engineering and Regenerative Medicine}, volume = {14}, journal = {Journal of Tissue Engineering and Regenerative Medicine}, number = {7}, doi = {10.1002/term.3031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215471}, pages = {897 -- 908}, year = {2020}, abstract = {When aiming at cell-based therapies in osteoarthritis (OA), proinflammatory conditions mediated by cytokines such as IL-1β need to be considered. In recent studies, the phytoalexin resveratrol (RSV) has exhibited potent anti-inflammatory properties. However, long-term effects on 3D cartilaginous constructs under inflammatory conditions with regard to tissue quality, especially extracellular matrix (ECM) composition, have remained unexplored. Therefore, we employed long-term model cultures for cell-based therapies in an in vitro OA environment and evaluated effects of RSV. Pellet constructs made from expanded porcine articular chondrocytes were cultured with either IL-1β (1-10 ng/ml) or RSV (50 μM) alone, or a cotreatment with both agents. Treatments were applied for 14 days, either directly after pellet formation or after a preculture period of 7 days. Culture with IL-1β (10 ng/ml) decreased pellet size and DNA amount and severely compromised glycosaminoglycan (GAG) and collagen content. Cotreatment with RSV distinctly counteracted the proinflammatory catabolism and led to partial rescue of the ECM composition in both culture systems, with especially strong effects on GAG. Marked MMP13 expression was detected in IL-1β-treated pellets, but none upon RSV cotreatment. Expression of collagen type I was increased upon IL-1β treatment and still observed when adding RSV, whereas collagen type X, indicating hypertrophy, was detected exclusively in pellets treated with RSV alone. In conclusion, RSV can counteract IL-1β-mediated degradation and distinctly improve cartilaginous ECM deposition in 3D long-term inflammatory cultures. Nevertheless, potential hypertrophic effects should be taken into account when considering RSV as cotreatment for articular cartilage repair techniques.}, language = {en} } @article{SchmidtAbinzanoMensingaetal.2020, author = {Schmidt, Stefanie and Abinzano, Florencia and Mensinga, Anneloes and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Malda, Jos and Levato, Riccardo and Blunk, Torsten}, title = {Differential production of cartilage ECM in 3D agarose constructs by equine articular cartilage progenitor cells and mesenchymal stromal cells}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms21197071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236180}, year = {2020}, abstract = {Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering.}, language = {en} }