@article{BiehlEhlisMuelleretal.2013, author = {Biehl, Stefanie C. and Ehlis, Ann-Christine and M{\"u}ller, Laura D. and Niklaus, Andrea and Pauli, Paul and Herrmann, Martin J.}, title = {The impact of task relevance and degree of distraction on stimulus processing}, series = {BMC Neuroscience}, journal = {BMC Neuroscience}, doi = {10.1186/1471-2202-14-107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97271}, year = {2013}, abstract = {Background The impact of task relevance on event-related potential amplitudes of early visual processing was previously demonstrated. Study designs, however, differ greatly, not allowing simultaneous investigation of how both degree of distraction and task relevance influence processing variations. In our study, we combined different features of previous tasks. We used a modified 1-back task in which task relevant and task irrelevant stimuli were alternately presented. The task irrelevant stimuli could be from the same or from a different category as the task relevant stimuli, thereby producing high and low distracting task irrelevant stimuli. In addition, the paradigm comprised a passive viewing condition. Thus, our paradigm enabled us to compare the processing of task relevant stimuli, task irrelevant stimuli with differing degrees of distraction, and passively viewed stimuli. EEG data from twenty participants was collected and mean P100 and N170 amplitudes were analyzed. Furthermore, a potential connection of stimulus processing and symptoms of attention deficit hyperactivity disorder (ADHD) was investigated. Results Our results show a modulation of peak N170 amplitudes by task relevance. N170 amplitudes to task relevant stimuli were significantly higher than to high distracting task irrelevant or passively viewed stimuli. In addition, amplitudes to low distracting task irrelevant stimuli were significantly higher than to high distracting stimuli. N170 amplitudes to passively viewed stimuli were not significantly different from either kind of task irrelevant stimuli. Participants with more symptoms of hyperactivity and impulsivity showed decreased N170 amplitudes across all task conditions. On a behavioral level, lower N170 enhancement efficiency was significantly correlated with false alarm responses. Conclusions Our results point to a processing enhancement of task relevant stimuli. Unlike P100 amplitudes, N170 amplitudes were strongly influenced by enhancement and enhancement efficiency seemed to have direct behavioral consequences. These findings have potential implications for models of clinical disorders affecting selective attention, especially ADHD.}, language = {en} } @phdthesis{Geissler2013, author = {Geissler, Julia Maria}, title = {Neuropsychological Endophenotypes of Attention-Deficit/Hyperactivity Disorder}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79221}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Attention-Deficit/Hyperactivity Disorder (ADHD) endophenotypes as a link between phenotype and genotype were the focus of the present work. Candidate endophenotypes were investigated via neuropsychological tasks during the simultaneous recording of a 21-channel electroencephalogram. Since endophenotypes are assumed to more closely reflect genetic variation, the influence of ADHD-associated genes Catechol-O-methyl transferase (COMT), the dopamine transporter (DAT, SLC6A3) and Latrophilin-3 (LPHN3) was analysed. Response inhibition was assessed with a cued Continuous Performance Test, for working memory we used an n-back task, sensory gating was measured via the paired clicks paradigm and response time variability (RTV) was quantified by the standard deviation of reaction times. The sample comprised medicated (N=36) and unmedicated (N=42) ADHD patients and matched control children and adolescents (N=41). The electrophysiological correlate of response inhibition was the centroid location during response execution and inhibition, and the degree of anteriorization (NGA). Sensory gating reflects the attenuation of the P50 response to the second of two auditory stimuli presented in short succession. Working memory was examined during target and non-target trials, reflecting specific information processing stages: early sensory processing (P100 and N100), selection of material (P150), memory retrieval (N300), event categorization (P300) and updating of working memory content (P450). Performance was quantified in terms of omission errors reflecting inattention and false alarms reflecting impulsivity, as well as speed and variability of reactions. Unmedicated ADHD patients had more omission errors and more variable reaction times, pointing to difficulties with attention and state regulation. NGA did not prove an optimal endophenotype candidate, since it was not yet developed in approximately half of the examined children and adolescents. It was independent of diagnosis; however ADHD risk alleles for DAT conferred lower NGA as well as more variable reaction times across groups. DAT genotype interacted with diagnosis on the level of centroid location, however, it did not manifest in performance deficits. In the case of sensory gating, homozygosity for the DAT allele associated with ADHD (10R) conferred impairment. ADHD was only relevant in participants without genetic risk, where patients without medication struggled most with suppression. In the working memory task, DAT modulated the timing of material selection in interaction with cognitive load and diagnosis: under high load unmedicated patients showed delayed responses, while under low load risk carriers on medication had faster responses than controls. Early processing and event-categorization were stronger in unmedicated ADHD with risk genotype, but dampened without risk. An interesting trend emerged for LPHN3, where carrying all risk variants was associated with higher NGA in ADHD patients irrespective of medication. This warrants further study, as the haplotype also exerts a positive influence on sensory gating specifically in patients. At the same time within the genetic risk group, unmedicated patients had the weakest NGA. However, the LPHN3 risk haplotype effected more posterior Go centroids, putatively facilitating response execution, which is supported by a higher number of false alarms. When inhibition was required, the risk variants led to more posterior centroids in unmedicated compared to medicated patients as well as controls, speaking to differences in inhibition-related brain activation. While as expected the risk haplotype led to compromised gating in unmedicated ADHD, this was reversed in healthy controls where the haplotype was acting in a protective manner with enhanced filtering. During working memory operations, the risk haplotype showed stronger N300 responses suggesting investment of more resources. While COMT did not exert an influence on NGA directly, carriers of the risk allele (met) had more posterior centroids both during response execution and inhibition, and displayed more variable responses in addition to being more prone to false alarms. Unmedicated patients produced smaller P300 during successful execution of responses than controls in absence of the risk allele, while with risk they had shorter latencies and presumably tend towards premature reactions. Additionally, it brought out impairments in sensory gating, thus making unmedicated patients less able to filter out irrelevant information, while they were able to compensate with the protective genotype. The influence of COMT on sensory gating seems to be specific for ADHD, as this gene was of no consequence in healthy controls. In the working memory task, met was beneficial for updating as reflected by P450 amplitude. In ADHD irrespective of medication COMT did not change P450 strength, but for controls this effect was observed.}, subject = {Aufmerksamkeits-Defizit-Syndrom}, language = {en} }