@phdthesis{Alzheimer2023, author = {Alzheimer, Mona}, title = {Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\)}, doi = {10.25972/OPUS-19344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases.}, subject = {Campylobacter jejuni}, language = {en} } @phdthesis{Grosz2015, author = {Grosz, Magdalena Urszula}, title = {Identification of phagosomal escape relevant factors in Staphylococcus aureus infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121981}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Staphylococcus aureus is a facultative Gram-positive human pathogen which can cause different severe infections. Staphylococci are phagocytosed by professional and non-professional phagocytes; they are strongly cytotoxic against eukaryotic cells and have been proposed to play a role in immune evasion by spreading within migrating phagocytes. This study investigated the post invasive events upon S. aureus infection. Strains which are able to escape the phagosome were identified and the responsible toxins were determined. Thereby innovative insights into host pathogen interaction were obtained. A novel class of small amphipathic peptides with strong surfactant-like properties, the phenol soluble modulins, particularly PSMα as well as the leukocidin LukAB, are involved in phagosomal escape of the clinical S. aureus strains LAC, MW2 and 6850 in non-professional and professional phagocytes. Whereas, PSMβ, δ-toxin, α-toxin, β-toxin or phosphatidyl inositol-dependent phospholipase C did not affect phagosomal escape. By blocking the bacterial DNA-dependent RNA polymerase with rifampicin phagosomal escape is determined to start approximately 2.5 hours post infection. Phagosomal escape further was required for intracellular replication of S. aureus. Strains which are not able to escape cannot replicate in the acidic vacuole, whereas, the host cytoplasm offers a rich milieu for bacterial replication. Additionally, phagosomal escape, with intracellular bacterial replication induces the subsequent host cell death. This could be confirmed by an infection assay including S. aureus knockout mutants in psmα or lukAB which were significantly less cytotoxic, compared with those infected with escape-positive wild type strains. Further, this study showed that phagosomal escape is not only mediated by bacterial toxins. Since, the phagocyte-specific cognate receptors for both escape relevant toxins, FPR2 (PSMα receptor) and CD11b (LukAB receptor) are produced in epithelial and endothelial cells only after infection with S. aureus in a calcium dependent fashion. The knockdown of both receptors using siRNA prevents S. aureus to escape the phagosome. Furthermore, blocking intracellular calcium release with the inositol trisphosphate receptor (IP3R) inhibitor 2-APB prohibits upregulation of fpr2 and cd11b and subsequently phagosomal escape of S. aureus. To conclude, the current study clarifies that phagosomal escape and host cell death are interplay of both, bacterial toxins and host cell factors. Staphylococcus aureus ist ein fakultativ Gram-positives Humanpathogen, dass verschiedene schwerwiegende Infektionen verursachen kann. Staphylokokken werden von professionellen und nicht-professionellen Phagozyten (Fresszellen) zu gleich aufgenommen. Desweitern sind sie stark zytotoxisch f{\"u}r eukaryotische Zellen. Außerdem wird vermutet, dass sie sich mittels migrierender Phagozyten dem angeborenen Immunsystem entziehen k{\"o}nnen. In dieser Studie werden die post-invasiven Ereignisse w{\"a}hrend einer Staphylokokken Infektion untersucht. Im Detail wurden St{\"a}mme identifiziert die aus den Phagosomen entkommen k{\"o}nnen und die daf{\"u}r verantwortlichen Toxine. Im Zuge dessen wurden neue Erkenntnisse der Interaktion zwischen Bakterien und Wirtszellen gewonnen. Eine neue Klasse von kleinen amphiphatischen Peptiden mit starken grenzfl{\"a}chenaktiven Eigenschaften (Surfactant), die sogenannten Phenol soluble modulins (PSMs) im Besonderen PSMα sowie das Leukozidin LukAB, sind am phagosomalen Ausbruch der klinisch relevanten S. aureus St{\"a}mmen LAC, MW2 und 6850 in nicht professionellen und professionellen Phagozyten involviert. Hingegen, sind PSMβ, δ-toxin, α-toxin, β-toxin oder Phosphatidylinositol abh{\"a}ngige Phospholipase C nicht am phagosomalen Ausbruch beteiligt. Durch die Hemmung der bakteriellen DNA-abh{\"a}ngigen RNA Polymerase mit Rifampicin wurde der Zeitpunkt f{\"u}r den Ausbruch auf etwa 2,5 Stunden nach der Infektion eingegrenzt. Der phagosomale Ausbruch ist weiterhin f{\"u}r die intrazellul{\"a}re Replikation von S. aureus notwendig. W{\"a}hrend St{\"a}mme, die nicht ausbrechen k{\"o}nnen in der anges{\"a}uerten Vakuole nicht replizieren k{\"o}nnen, bietet das Zytoplasma ein reichhaltiges Milieu f{\"u}r die Vermehrung. Zudem wird der Pathogen induzierte Zelltod erst nach dem phagosomalen Ausbruch und mit anschließender Vermehrung erm{\"o}glicht. Nachgewiesen wurde dies mittels psmα und lukAB defizienten Mutanten welche signifikant weniger zytotoxisch waren als der Wildtyp Stamm. Diese Studie zeigt dar{\"u}ber hinaus, dass der phagosomale Ausbruch nicht nur durch bakterielle Toxine vermittelt wird. Sondern, dass die Phagozyten-spezifischen Rezeptoren f{\"u}r beide relevanten Toxine, FPR2 (PSMα Rezeptor) und CD11b (LukAB Rezeptor), in Epithel- und Endothelzellen nach Infektion mit S. aureus calciumabh{\"a}ngig produziert werden und f{\"u}r den Ausbruch notwendig sind. Der knockdown beider Rezeptoren mittels siRNA verhindert den Ausbruch. Wird der intrazellul{\"a}re Calciumstrom mittels des Inositoltrisphosphat Rezeptor (IP3R) Inhibitor 2-APB blockiert k{\"o}nnen die Gene fpr2 und cd11b nicht hochreguliert werden und der Ausbruch wird ebenfalls verhindert. Folglich zeigt diese Studie, dass der phagosomale Ausbruch und Pathogen induzierte Zelltod sowohl durch bakterielle Toxine als auch Wirtsfaktoren vermittelt wird.}, subject = {Phagosom}, language = {en} }