@phdthesis{ZelmanFemiak2011, author = {Zelman-Femiak, Monika}, title = {Single Particle Tracking ; Membrane Receptor Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65420}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Single-molecule microscopy is one of the decisive methodologies that allows one to clarify cellular signaling in both spatial and temporal dimentions by tracking with nanometer precision the diffusion of individual microscopic particles coupled to relevant biological molecules. Trajectory analysis not only enables determination of the mechanisms that drive and constrain the particles motion but also to reveal crucial information about the molecule interaction, mobility, stoichiometry, all existing subpopulations and unique functions of particular molecules. Efficacy of this technique depends on two problematic issues the usage of the proper fluorophore and the type of biochemical attachment of the fluorophore to a biomolecule. The goal of this study was to evolve a highly specific labeling method suitable for single molecule tracking, internalization and trafficking studies that would attain a calculable 1:1 fluorophore-to-receptor stoichiometry. A covalent attachment of quantum dots to transmembrane receptors was successfully achieved with a techinque that amalgamates acyl carrier protein (ACP) system as a comparatively small linker and coenzyme A (CoA)-functionalized quantum dots. The necessity of optimization of the quantum dot usage for more precise calculation of the membrane protein stoichiometries in larger assemblies led to the further study in which methods maximizing the number of signals and the tracking times of diverse QD types were examined. Next, the optimized techniques were applied to analyze behavior of interleukin-5 β-common chain receptor (IL-5Rβc) receptors that are endogenously expressed at low level on living differentiated eosinophil-like HL-60 cells. Obtained data disclosed that perused receptors form stable and higher order oligomers. Additionally, the mobility analysis based on increased in number (>10\%) uninterrupted 1000-step trajectories revealed two patterns of confined motion. Thereupon methods were developed that allow both, determination of stoichiometries of cell surface protein complexes and the acquisition of long trajectories for mobility analysis. Sequentially, the aforementioned methods were used to scrutinize on the mobility, internalization and recycling dynamics characterization of a G protein-coupled receptor (GPCRs), the parathyroid hormone receptor (PTHR1) and several bone morphogenetic proteins (BMPs), a member of the TGF-beta superfamily of receptors. These receptors are two important representatives of two varied membrane receptor classes. BMPs activate SMAD- and non-SMAD pathways and as members of the transforming growth factor β (TGF-β) superfamily are entailed in the regulation of proliferation, differentiation, chemotaxis, and apoptosis. For effective ligand induced and ligand independent signaling, two types of transmembrane serine/threonine kinases, BMP type I and type II receptors (BMPRI and BMPRII, respectively) are engaged. Apparently, the lateral mobility profiles of BMPRI and BMPRII receptors differ markedly, which determinate specificity of the signal. Non-SMAD signaling and subsequent osteoblastic differentiation of precursor cells particularly necessitate the confinement of the BMP type I receptor, resulting in the conclusion that receptor lateral mobility is a dominative mechanism to modulate SMAD versus non-SMAD signaling during differentiation. Confined motion was also predominantly observed in the studies devoted to, entailed in the regulation of calcium homeostasis and in bone remodeling, the parathyroid hormone receptor (PTHR1), in which stimulation with five peptide ligands, specific fragments of PTH: hPTH(1-34), hPTHrP(107-111)NH2; PTH(1-14); PTH(1-28) G1R19, bPTH(3-34), first four belonging to PTH agonist group and the last to the antagonist one, were tested in the wide concentration range on living COS-1 and AD293 cells. Next to the mobility, defining the internalization and recycling rates of the PTHR1 receptor maintained in this investigation one of the crucial questions. Internalization, in general, allows to diminish the magnitude of the receptor-mediated G protein signals (desensitization), receptor resensitization via recycling, degradation (down-regulation), and coupling to other signaling pathways (e.g. MAP kinases). Determinants of the internalization process are one of the most addressed in recent studies as key factors for clearer understanding of the process and linking it with biological responses evoked by the signal transduction. The internalization of the PTH-receptor complex occurs via the clathrin-coated pit pathway involving β-arrestin2 and is initiated through the agonist occupancy of the PTHR1 leading to activation of adenylyl cyclase (via Gs), and phosphatidylinositol-specific phospholipase Cβ (via Gq). Taken together, this work embodies complex study of the interleukin-5 β-common chain receptor (IL-5Rβc) receptors, bone morphogenetic proteins (BMPs) and the parathyroid hormone receptor with the application of single-molecule microscopy with the newly attained ACP-quantum dot labeling method and standard techniques.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {en} } @phdthesis{Bechmann2004, author = {Bechmann, Michael}, title = {Dynamics in quantum spin glass systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12519}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {This thesis aims at a description of the equilibrium dynamics of quantum spin glass systems. To this end a generic fermionic SU(2), spin 1/2 spin glass model with infinite-range interactions is defined in the first part. The model is treated in the framework of imaginary-time Grassmann field theory along with the replica formalism. A dynamical two-step decoupling procedure, which retains the full time dependence of the (replica-symmetric) saddle point, is presented. As a main result, a set of highly coupled self-consistency equations for the spin-spin correlations can be formulated. Beyond the so-called spin-static approximation two complementary systematic approximation schemes are developed in order to render the occurring integration problem feasible. One of these methods restricts the quantum-spin dynamics to a manageable number of bosonic Matsubara frequencies. A sequence of improved approximants to some quantity can be obtained by gradually extending the set of employed discrete frequencies. Extrapolation of such a sequence yields an estimate of the full dynamical solution. The other method is based on a perturbative expansion of the self-consistency equations in terms of the dynamical correlations. In the second part these techniques are applied to the isotropic Heisenberg spin glass both on the Fock space (HSGF) and, exploiting the Popov-Fedotov trick, on the spin space (HSGS). The critical temperatures of the paramagnet to spin glass phase transitions are determined accurately. Compared to the spin-static results, the dynamics causes slight increases of T_c by about 3\% and 2\%, respectively. For the HSGS the specific heat C(T) is investigated in the paramagnetic phase and, by way of a perturbative method, below but close to T_c. The exact C(T)-curve is shown to exhibit a pronounced non-analyticity at T_c and, contradictory to recent reports by other authors, there is no indication of maximum above T_c. In the last part of this thesis the spin glass model is augmented with a nearest-neighbor hopping term on an infinite-dimensional cubic lattice. An extended self-consistency structure can be derived by combining the decoupling procedure with the dynamical CPA method. For the itinerant Ising spin glass numerous solutions within the spin-static approximation are presented both at finite and zero temperature. Systematic dynamical corrections to the spin-static phase diagram in the plane of temperature and hopping strength are calculated, and the location of the quantum critical point is determined.}, subject = {Spinglas}, language = {en} }