@phdthesis{Kanal2015, author = {Kanal, Florian}, title = {Femtosecond Transient Absorption Spectroscopy - Technical Improvements and Applications to Ultrafast Molecular Phenomena}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118771}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Photoinduced processes are nowadays studied with a huge variety of spectroscopic methods. In the liquid phase, transient absorption spectroscopy is probably the most versatile pump-probe technique used to study light-induced molecular phenomena. Optical time-resolved spectroscopy is established in a large number of laboratories and is still further being developed with respect to many technical aspects. Nevertheless, the full potential of shortening the data-acquisition time—necessary for the investigation of rapidly photodegrading samples and observation of macroscopically fast processes—achievable with high-repetition-rate laser systems and shot-to-shot detection was not fully exploited. Especially, shot-to-shot detection is highly beneficial due to the high correlation of subsequent laser pulses. The development and implementation of 100 kHz broadband shot-to-shot data acquisition was presented in Chapter 3. For an established laser dye as a benchmark system, ultrafast excited-state dynamics were measured for the first time with broadband shot-to-shot detection at 100 kHz. An analysis of both the noise characteristics of the employed laser and the correlation of subsequent pulses quantified the advantage of shot-to-shot data acquisition. In the utilized software environment, the time for measuring a complete data set could be sped up by a factor of three or even higher compared to a laser system working at 1 kHz. So far, the limiting factor is the data processing and the movement of the mechanical delay stage. Nevertheless, the new shot-to-shot detection has the potential to shorten the measurement time up to a factor of 100. The data quality is improved by a factor of three when the hitherto conventional averaging scheme is compared to shot-to-shot acquisition for the same number of laser pulses. The expansion of shot-to-shot data acquisition for high repetition rates will allow studies on sensitive samples as exposure times can strongly be reduced to achieve the same signal-to-noise ratio. In addition, multidimensional spectroscopy can also be extended to high-repetition shot-to-shot readout allowing an efficient recording of data. Therefore, in future experiments, dynamics and couplings in sensitive samples and kinetic processes could be studied in more detail. Complex photophysical and photochemical phenomena are subject of many fields of research. Many of these multifaceted processes are not yet fully understood. Therefore, a possible approach is the elucidation of single reaction steps with the combination of transient absorption spectroscopy and a suitable, less complex model system. The systematic variation of the model system's properties and environments, e.g., by chemical substitution or adequate choice of the solvent allows the determination of essential entities and reactivities thereof. Proper knowledge of an individual intermediate step and its determining factors can enhance the understanding of the complete photoreaction process. The application of transient absorption spectroscopy was shown for the optically-induced electron transfer in a series of donor-acceptor oligomers in Chapter 4. In general, the solvent relaxation times were isolated from the back-electron-transfer dynamics by a global lifetime analysis. For the smallest oligomeric structure where complete charge separation is possible, an ultrafast equilibration leads to charge recombination from the configuration showing the lowest barrier for recombination. The back-electron transfer strongly depends on the utilized solvent. Whereas in dichloromethane the back-electron transfer occurs with the maximum rate in the barrierless optimal region, the dynamics in toluene are governed by a Marcus inverted-region effect. The experimentally observed rates were also estimated by theoretical calculations of the respective barriers. The study did not only successfully unravel charge transfer in the oligomeric systems but also improved the understanding of the electron-transfer properties of larger polymers from an earlier study. Therefore, the combination of length variation and time-resolved spectroscopy is an important step towards the correct prediction of charge-carrier dynamics in macroscopic devices, e.g., for photovoltaics. The bond dissociation of a carbon-monoxide-releasing molecule in aqueous solution was studied in Chapter 5 as a prototype reaction for the photo-triggered breaking of a bond. It was shown that upon excitation only one carbon-monoxide ligand of the tricarbonyl complex is dissociated. A fraction of the photolyzed molecules restore the intact initial complex by geminate recombination within the temporal resolution of the experiment. However, the recombination could be detected by the hot ground-state infrared absorption of the complex. The detectable dicarbonyl formed upon CO release distributes excess energy from the absorbed photon into low-frequency modes which result in broadened absorption bands like for the recombined tricarbonyl. The free coordination site in the ligand sphere is filled with a solvent water molecule. Despite numerous studies of metal carbonyls studied in alkaneous solutions, the elucidation of the dynamics of a CORM in aqueous solution added another important detail to the photochemistry of this class of compounds. Experiments employing a second ultraviolet pump pulse did not trigger further CO dissociation and hence no formation of a monocarbonyl species; this might either be due to a different release mechanism without a further photochemical step or a strong spectral shift of the dicarbonyl's absorption. Both reasons could explain why degenerate pump-repump-probe spectroscopy is inefficient. However, further experiments with ultraviolet probe pulses could substantiate whether the intermediate dicarbonyl reacts further photochemically or not. Apart from the model-system character of the CORM for bond dissociation, the study could determine exactly how many CO ligands are initially photolyzed off. Detailed knowledge of the release mechanism will affect the previous use and application as well as the further development of CORMs as therapeutic prodrugs to deliver high local concentrations of CO in cancerous or pathological tissue. Hence, the study of two-photon absorption properties which are important for in vivo applications of CORMs should be the main focus in further spectroscopic experiments. In Chapter 6, both abovementioned molecular phenomena—electron transfer and bond dissociation—were studied in combination. The photochemistry of a tetrazolium salt was studied in detail in a variety of different solvents. Being a relatively small molecule, the studied tetrazolium cation shows a multifaceted photochemistry and is therefore a textbook example for the combination of ultrafast molecular phenomena studied in different environments. Within femtoseconds, the tetrazolium ring is opened. The biradicalic species is then reduced via uptake of an electron from the solvent. The formation of the ring-open formazan photoproduct from this point of the reaction sequence on was excluded by experiments with acidic pH value of the solution. The ring-open radical is stabilized by ring-closure. The resulting tetrazolinyl radical was already observed in experiments with microsecond time resolution. However, its formation was observed in real time for the first time in this study. Irradiation of a tetrazoliumsalt solution yields different photoproduct distributions depending on the solvent. However, it was shown that all photoproducts have a tetrazolinyl radical as a common precursor on an ultrafast time scale. In combination with studies from the literature, the complete photochemical conversion of a tetrazolium salt was clarified in this study. Apart from the prototype character of the reaction sequence, the reaction mechanism will have impact on research associated with life science where tetrazolium assays are used on a daily basis without taking into account of photochemical conversion of the indicating tetrazolium ion and its photochemically formed reactive intermediates. On the basis of the tetrazolium-ion photochemistry, the rich photochemistry of the formazan photoproduct, including structural rearrangements and subsequent reformation of the tetrazolium ion, might be the subject of future studies. This thesis shows a method advancement and application of transient absorption spectroscopy to exemplary molecular model systems. The insights into each respective field did not only enlighten singular aspects, but have to be seen in a much larger context. Understanding complex photoinduced processes bottom-up by learning about their constituting steps—microscopically and on an ultrafast time scale—is an ideal method to approach understanding and prediction of phenomena in large molecular systems like biological or artificial architectures as for example used in photosynthetic light-harvesting and photovoltaics.}, subject = {Ultrakurzzeitspektroskopie}, language = {en} } @phdthesis{Marquetand2007, author = {Marquetand, Philipp}, title = {Vectorial properties and laser control of molecular dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24697}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In this work, the laser control of molecules was investigated theoretically. In doing so, emphasis was layed on entering vectorial properties and in particular the orientation in the laboratory frame. Therefore, the rotational degree of freedom had to be included in the quantum mechanical description. The coupled vibrational and rotational dynamics was examined, which is usually not done in coherent control theory. Local control theory was applied, where the field is determined from the dynamics of a system, which reacts with an instantaneous response to the perturbation and, in turn, determines the field again. Thus, the field is entangled with the quantum mechanical motion and the presented examples document, that this leads to an intuitive interpretation of the fields in terms of the underlying molecular dynamics. The limiting case of a classical treatment was shown to give similar results and hence, eases to understand the complicated structure of the control fields. In a different approach, the phase- and amplitude shaping of laser fields was systematically studied in the context of controlling population transfer in molecules.}, subject = {Laserchemie}, language = {en} } @phdthesis{Krampert2004, author = {Krampert, Gerhard}, title = {Femtosecond quantum control and adaptive polarization pulse shaping}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10304}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Adaptive Femtosekunden-Quantenkontrolle hat sich in den letzten Jahren als eine sehr erfolgreiche Methode in vielen wissenschaftlichen Gebieten wie Physik, Chemie oder Biologie erwiesen. Eine Vielzahl von Quantensystemen und insbesondere Molek{\"u}le, die eine chemische Reaktion durchlaufen, sind durch speziell geformte, Femtosekunden-Laserimpulse kontrolliert worden. Diese Methode erlaubt es, nicht nur das Quantensystem zu beobachten, sondern einen Schritt weiterzugehen und aktive Kontrolle {\"u}ber quantenmechanische Dynamik zu erlangen. In diesem Schema werden Interferenzph{\"a}nomene im Zeit- und Frequenzraum benutzt, um Selektivit{\"a}t zum Beispiel in einer chemischen Reaktion zu erhalten. Die dazu benutzten, speziell geformten Femtosekunden-Laserimpulse waren bislang nur linear polarisiert. Deshalb konnten sie nur die skalaren Eigenschaften der Licht - Materie - Wechselwirkung ausnutzen und haben so den vektoriellen Charakter des elektrischen Dipolmoments \$\vec{\mu}\$ und des elektrischen Lichtfeldes \$\vec{E}(t)\$ vernachl{\"a}ssigt. Im besonderen in der Quantenkontrolle von chemischen Reaktionen ist das untersuchte System, die Molek{\"u}le, dreidimensional und zeigt komplexe raumzeitliche Dynamik. Mit der Hilfe von polarisations-geformten Laserimpulsen ist man jetzt in der Lage dieser Dynamik, sowohl in der Zeit als auch in der r{\"a}umlichen Richtung zu folgen. Deshalb kann nun ein neues Niveau an Kontrolle in quanten-mechanischen Systemen erreicht werden. In dieser Arbeit konnte die Erzeugung von polarisations-geformten Laserimpulsen in einem optischen Aufbau verwirklicht werden. Dieser Aufbau erfordert keine interferometrische Stabilit{\"a}t, da beide Polarisationskomponenten demgleichen Strahlweg folgen. Zwei-Kanal spektrale Interferometrie wurde eingesetzt, um die Laserimpulse experimentell vollst{\"a}ndig zu charakterisieren. Um den zeitabh{\"a}ngigen Polarisationszustand dieser Pulse exakt zu beschreiben, wurde eine mathematische Darstellung entwickelt und angewandt. Die Ver{\"a}nderungen des Polarisationszustandes durch optische Elemente wurde untersucht und einige L{\"o}sungen wurden aufgezeigt, um diese Ver{\"a}nderungen zu minimieren. Der Jones Matrix Formalismus wurde dazu benutzt, alle Verzerrungen des Polarisationszustandes zwischen dem Impulsformer und dem Ort des Experiments zu ber{\"u}cksichtigen. Zugleich k{\"o}nnen die Jones Matrizen zu einer vollst{\"a}ndigen Charakterisierung der erzeugten Laserimpulse verwendet werden. Dabei wurden experimentell kalibrierte Matrizen eingesetzt. Adaptive Polarisations-Impulsformung konnte in einem rein optischen Demonstrationsexperiment gezeigt werden. Dabei wurde die computergesteuerte Polarisationsformung mit einer Lernschleife und einem experimentellen R{\"u}ckkopplungssignal kombiniert. Durch diesen selbstlernenden Algorithmus konnte der ben{\"o}tigte, linear polarisierte Laserimpuls mit m{\"o}glichst kleiner Impulsdauer gefunden werden, der f{\"u}r die effektive Erzeugung der zweiten Harmonischen in einem nichtlinearen optischen Kristall am besten geeignet ist. Durch diese R{\"u}ckkopplungsschleife war es m{\"o}glich auch noch kompliziertere Polarisationsverzerrungen, die durch eine Wellenplatte f{\"u}r eine falsche Wellenl{\"a}nge verursacht wurden, r{\"u}ckg{\"a}ngig zu machen. Die zus{\"a}tzliche Verformung der spektralen Phase durch Materialdispersion in einem 10~cm langen Glasblock konnte ebenfalls automatisch kompensiert werden. Nach diesen optischen Demonstrationsexperimenten wurde ultraschnelle Polarisationsformung angewandt, um ein Quantensystem zu kontrollieren. Die Polarisationsabh{\"a}ngigkeit der Multi-Photonen Ionisation von Kaliumdimeren konnte in einer Anrege-Abtast Messung nachgewiesen werden. Diese Abh{\"a}ngigkeit wurde dann in einem adaptiven Polarisationsformungsexperiment in einer sehr viel allgemeineren Art ausgenutzt. Statt nur einem Anrege- und Abtastlaserimpuls mit jeweils unterschiedlicher Polarisation zu benutzen, wurde der zeitabh{\"a}ngige Polarisationszustand eines geformtem Laserimpulses benutzt, um die Ionisation zu maximieren. Anstelle von einer nur quantitativen Verbesserung konnte eine qualitativ neue Art von Kontrolle {\"u}ber Quantensysteme demonstriert werden. Diese Polarisationskontrolle ist anwendbar selbst bei zuf{\"a}llig ausgerichteten Molek{\"u}len. Durch diese M{\"o}glichkeit, auf Ausrichtung der Molek{\"u}le zu verzichten, konnte mit einem wesentlich vereinfachten experimentellen Aufbau gearbeitet werden. {\"U}ber diese Polarisationskontrollexperimente hinaus wurden auch die dreidimensionalen Aspekte der Dynamik von Molek{\"u}len erforscht und kontrolliert. Die \textit{cis-trans} Photoisomerisierungsreaktion von 3,3\$'\$-Diethyl-2,2\$'\$-Thiacyanin Iodid (NK88) wurde in der fl{\"u}ssigen Phase mit transienter Absorptionsspektroskopie untersucht. Die Isomerisierungsausbeute konnte sowohl erh{\"o}ht als auch erniedrigt werden durch den Einsatz geformter Femtosekunden-Laserimpulse mit einer Zentralwellenl{\"a}nge von 400~nm, die sowohl in spektraler Phase als auch Amplitude moduliert waren. Dieses Experiment zeigt die M{\"o}glichkeit, die koh{\"a}rente Bewegung großer molekularer Gruppen durch Laserimpulse gezielt zu beeinflussen. Diese Modifikation der molekularen Geometrie kann als erster Schritt angesehen werden, kontrollierte Stereochemie zu verwirklichen. Insbesondere da im ersten Teil dieser Arbeit die Kontrolle von Molek{\"u}len mit Polarisations-geformten Impulsen gezeigt werden konnte, ist der Weg geebnet zu einer Umwandlung von einem chiralen Enantiomer in das andere, da theoretische Modelle dieser Umwandlung polarisations-geformte Laserimpulse ben{\"o}tigen. Außer diesen faszinierenden Anwendungen der Polarisationsformung sollte es nun m{\"o}glich sein den Wellenl{\"a}ngenbereich der polarisations-geformten Laserimpulse auszuweiten. Sowohl Erzeugung der zweiten Harmonischen um in den ultravioletten Bereich zu kommen als auch optische Gleichrichtung von {\"a}ußerst kurzen Femtosekunden-Impulsen um den mittleren infrarot Bereich abzudecken sind M{\"o}glichkeiten, den Wellenl{\"a}ngenbereich von polarisations-geformten Laserimpulsen zu erweitern. Mit diesen neuen Wellenl{\"a}ngen tut sich eine Vielzahl an neuen M{\"o}glichkeiten auf, Polarisationsformung f{\"u}r die Kontrolle von quantenmechanischen Systemen einzusetzen.}, subject = {Ultrakurzer Lichtimpuls}, language = {en} }