@article{BarahonadeBritoPatra2022, author = {Barahona de Brito, Carlotta and Patra, Amiya Kumar}, title = {NFAT factors are dispensable for the development but are critical for the maintenance of Foxp3\(^+\) regulatory T cells}, series = {Cells}, volume = {11}, journal = {Cells}, number = {9}, issn = {2073-4409}, doi = {10.3390/cells11091397}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270668}, year = {2022}, abstract = {The transcription factors of the nuclear factor of activated T cell (NFAT) family play a crucial role in multiple aspects of T cell function. It has recently been reported that NFATs play an important role in the suppressive function of CD4\(^+\)CD25\(^+\)Foxp3\(^+\) regulatory T (T\(_{reg}\)) cells. In this study, we have investigated the role of NFATs in the thymic development of T\(_{reg}\) cells in mice. We show that NFAT factors are dispensable for the development of Foxp3\(^+\) T\(_{reg}\) cells in the thymus but are critical for the maintenance of both the phenotype and survival of T\(_{reg}\) cells in the thymus as well as in peripheral lymphoid organs. Specifically, the homeostasis of CD4\(^+\)CD25\(^+\)Foxp3\(^+\) but not the CD4\(^+\)CD25\(^-\)Foxp3\(^+\) fraction is severely perturbed when NFAT signaling is blocked, leading to a strongly reduced T\(_{reg}\) population. We underscored this intriguing effect of NFAT on CD4\(^+\)CD25\(^+\)Foxp3\(^+\) T\(_{reg}\) cells to the disruption of survival signals provided by interleukin 2 (IL-2). Accordingly, blocking T\(_{reg}\) cell death by abolishing the activity of pro-apoptotic Bcl-2 family member Bim, compensated for the survival defects induced due to a lack of NFAT-IL-2-IL-2R signaling. Inhibition of NFAT activity led to a strong reduction in the number of Foxp3\(^+\) T\(_{reg}\) cells; however, it did not influence the level of Foxp3 expression on an individual cell basis. In addition, we show a differential effect of IL-2 and IL-7 signaling on Foxp3\(^+\) T\(_{reg}\) versus CD4\(^+\)CD25\(^-\) T cell development, again underlining the dispensability of NFAT signaling in the development, but not in the maintenance of Foxp3\(^+\) T\(_{reg}\) cells.}, language = {en} } @article{MajumderJugovicSauletal.2021, author = {Majumder, Snigdha and Jugovic, Isabelle and Saul, Domenica and Bell, Luisa and Hundhausen, Nadine and Seal, Rishav and Beilhack, Andreas and Rosenwald, Andreas and Mougiakakos, Dimitrios and Berberich-Siebelt, Friederike}, title = {Rapid and Efficient Gene Editing for Direct Transplantation of Naive Murine Cas9\(^+\) T Cells}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.683631}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242896}, year = {2021}, abstract = {Gene editing of primary T cells is a difficult task. However, it is important for research and especially for clinical T-cell transfers. CRISPR/Cas9 is the most powerful gene-editing technique. It has to be applied to cells by either retroviral transduction or electroporation of ribonucleoprotein complexes. Only the latter is possible with resting T cells. Here, we make use of Cas9 transgenic mice and demonstrate nucleofection of pre-stimulated and, importantly, of naive CD3\(^+\) T cells with guideRNA only. This proved to be rapid and efficient with no need of further selection. In the mixture of Cas9\(^+\)CD3\(^+\) T cells, CD4\(^+\) and CD8\(^+\) conventional as well as regulatory T cells were targeted concurrently. IL-7 supported survival and naivety in vitro, but T cells were also transplantable immediately after nucleofection and elicited their function like unprocessed T cells. Accordingly, metabolic reprogramming reached normal levels within days. In a major mismatch model of GvHD, not only ablation of NFATc1 and/or NFATc2, but also of the NFAT-target gene IRF4 in na{\"i}ve primary murine Cas9\(^+\)CD3\(^+\) T cells by gRNA-only nucleofection ameliorated GvHD. However, pre-activated murine T cells could not achieve long-term protection from GvHD upon single NFATc1 or NFATc2 knockout. This emphasizes the necessity of gene-editing and transferring unstimulated human T cells during allogenic hematopoietic stem cell transplantation.}, language = {en} } @phdthesis{Pusch2015, author = {Pusch, Tobias}, title = {The transcription factor NFATc1 mediates cytotoxic T cell function in vitro and in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123690}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {While numerous experiments on NFAT were already performed with CD4+ T cells showing defective cytokine release and a reduced T helper cell development, no detailed studies existed for CD8+ T cells. From this point, we wanted to examine the impact of NFATc1 and c2 on the physiological functions of CD8+ T cells in vitro and in vivo. Therefore, we used a murine infection model with the bacteria Listeria monocytogenes and mice in which NFATc1 was specifically depleted in the T cell compartment. Our first in vitro studies showed a typical NFATc1 and c2 nuclear translocation and changes on mRNA levels upon T cell activation similarly in CD4+ as well as in CD8+ T cells extracted from wild type mice. NFAT nuclear translocation is important for target gene activation and generation of effector functions. Stimulated T cell populations lacking NFATc1 and/or NFATc2 showed a markedly decreased expression of Th1/Tc1 cytokines, as e.g. IL 2 and IFNγ being important for the clearance of intracellular pathogens. From our in vitro model for the generation of allogenically reactive cytotoxic CD8+ T cells, we revealed a decreased killing and lytic granule-release capacity in Nfatc1 inactivated CD8+ T cells whereas NFATc2-/- cytotoxic T cells did not show an altered cytotoxic response compared to wild type cells. Interestingly, we found lytic granules accumulated and mitochondria not getting translocated to the immunological synapse upon re-stimulation in NFATc1-deficient CD8+ T cells. Together with results showing the CsA insensitivity of the CTL killing/degranulation capacities, we assume that some major cellular processes are affected by NFATc1 which are not directly linked to the TCR-induced signal transduction cascade. We also showed the importance of NFATc1 in T cells during intracellular infections with the bacteria Listeria monocytogenes in an in vivo mouse model. After five days, only few bacteria were detected in wt mice whereas high amounts of Listeria particles were extracted from livers of Nfatc1fl/fl x Cd4 cre mice. Although the reactivity towards the pathogen was similar in both groups, a decreased cytokine expression in NFATc1-/- CD8+ T cells was observed together with an altered memory cell generation. Our results show the importance of NFATc1 in CD8+ T cells and give some clue for a possible connection to other basal cellular functions, as e.g. the formation of an immunological synapse.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Alrefai2014, author = {Alrefai, Hani Gouda Alsaid}, title = {Molecular Characterization of NFAT Transcription Factors in Experimental Mouse Models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97905}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work we wanted to investigate the role of NFATc1 in lymphocyte physiology and in pathological conditions (eg. psoriasis). NFATc1 is part of the signal transduction pathways that regulates B cells activation and function. NFATc1 has different isoforms that are due to different promoters (P1 and P2), polyadenylation and alternative splicing. Moreover, we tried to elucidate the points of interactions between the NFAT and the NF-κB pathways in activated B-cell fate. NFAT and NF-κB factors share several properties, such as a similar mode of induction and architecture in their DNA binding domain. We used mice which over-express a constitutive active version of NFATc1/α in their B cells with -or without- an ablated IRF4. IRF4 inhibits cell cycle progression of germinal center B cell-derived Burkitt's lymphoma cells and induces terminal differentiation toward plasma cells. Our experiments showed that a 'double hit' in factors affecting B cell activation (NFATc1 in this case) and late B cell Differentiation (IRF4 in this case) alter the development of the B cells, lead to increase in their numbers and increase in stimulation induced proliferation. Therefore, the overall picture indicates a link between these 2 genes and probable carcinogenic alterations that may occur in B cells. We also show that in splenic B cells, c-Rel (of the NF-κB canonical pathway) Support the induction of NFATc1/αA through BCR signals. We also found evidence that the lack of NFATc1 affects the expression of Rel-B (of the NF-κB non-canonical pathway). These data suggest a tight interplay between NFATc1 and NF-κB in B cells, influencing the competence of B cells and their functions in peripheral tissues. We also used IMQ-induced psoriasis-like inflammation on mice which either lack NFATc1 from B cell. Psoriasis is a systemic chronic immunological disease characterized primarily by abnormal accelerated proliferation of the skin keratinocytes. In psoriasis, the precipitating event leads to immune cell activation. Our experiments showed that NFATc1 is needed for the development of psoriasis. It also showed that IL-10 is the link that enables NFAT from altering the B cell compartment (eg Bregs) in order to affect inflammation. The important role of B cell in psoriasis is supported by the flared up psoriasis-like inflammation in mice that lack B cells. Bregs is a special type of B cells that regulate other B cells and T cells; tuning the immunological response through immunomodulatory cytokines.}, subject = {Schuppenflechte}, language = {en} } @phdthesis{Yang2007, author = {Yang, Shaoxian}, title = {The role of NFAT proteins in Rag and Nfatc1a Gene Regulation in Murine Thymus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23691}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In this thesis we have investigated the effect of NFAT (Nuclear Factor of Activated T Cell) transcription factors on the expression of Rag-(Recombination Activating Genes) genes in murine thymus. The protein products of Rag genes, RAG1 and RAG2, are critical for the recombination and generation of the TCR (T Cell Receptor) repertoire during thymocyte development, and their expression can be suppressed by the activity of NFAT factors. In thymus, the expression of Rag1 and Rag2 genes is induced at the double-negative (DN, CD4-8-) 3 stage, down-regulated at the DN4 stage, re-induced at the double-positive (DP, CD4+8+) stage, and suppressed again at the single-positive (SP, CD4+8- or CD4-8+) stage. Although it is known that TCR signaling suppresses the expression of Rag1 and Rag2 at the SP stage, the signals that mediate the Rag gene down-reulation remain elusive. Here we report that both the calcineurin-NFAT-signaling and MAPKinase signaling pathways, which are activated by TCR signaling during positive selection, mediate the Rag gene down-regulation in DP thymocytes. The calcineurin-NFAT pathway suppresses both the Rag1 and the Rag2 gene expression. This pathway has a stronger suppressive effect on the Rag1 than the Rag2 gene. A synergistic activity between the two NFAT factors NFATc2 and NFATc3 is essential for calcineurin-NFAT signaling to efficiently suppress the Rag gene expression in DP thymocytes. It is likely that the calcineurin-NFAT signaling down-regulates Rag gene expression by suppressing both the Rag anti-silencer element (ASE) activity and the Rag promoter activity. Similarly, MEK-ERK signaling of MAPK signaling pathway mediates the Rag gene suppression in DP thymocytes although the mechanism through which MEK-ERK mediates the Rag gene down-regulation has to be elucidated. In DN thymocytes, it appears that neither the calcineurin-NFAT signaling nor MAPK signaling is involved in the Rag gene down-regulation. However, a role for these two signaling pathways in the Rag gene up-regulation in DN thymocytes is not excluded. In DN thymocytes, pre-TCR signaling stimulates the expression both Nfatc1 and Nfatc2 genes but has no effect on Nfatc3 gene expression. In DN thymocytes, pre-TCR signaling activates Nfatc1\&\#945; expression but not Nfatc1ß expression, i.e. the two promoters controling Nfatc1 gene xpression are differently controled by pre-TCR signals. Nfatc1\&\#945; gene expression in DN thymocytes is mainly regulated by the MAPK signaling pathway because activation of Nfatc1\&\#945; is mediated by MEK-ERK signaling but opposed by JNK signaling. Calcineuirn-NFAT and p38 signaling pathways are not involved in Nfatc1\&\#945; promoter regulation in DN thymocytes. In DP thymocytes, TCR signaling up-regulates Nfatc1 and Nfatc2 expression but down-regulates Nfatc3 expression. In DP thymocytes, TCR signaling activates Nfatc1\&\#945; expression. The activation of Nfatc1\&\#945; in DP thymocytes is mediated by NFATc1, but not or to a less degree by NFATc2 and NFATc3. MEK-ERK, JNK, and p38 signaling pathways are involved in Nfatc1\&\#945; gene activation in DP thymocytes, probably by activating NFAT trans-activation activity. All these findings illustrate that in thymocytes the expression of NFAT transcription factors - which are essential for thymic development - is controled at multiple levels.}, language = {en} } @phdthesis{Patra2005, author = {Patra, Amiya Kumar}, title = {Modulation of the NFAT signaling pathway by protein kinase B (PKB) ; a perspective study in the context of thymocyte development and T cell function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13315}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {To analyze the role of protein kinase B(PKB)on developmental and functional aspects of T cells, we have generated transgenic mouse lines expressing a constitutively active form of PKB (myrPKB) in early stages of T cell development.Peripheral CD4+ T cells from PKB tg mice are hyperreactive, more efficient in producing th1 and th2 cytokines and show faster and CD28 co-stimulation independent cell cycle progression.Interestingly PKB tg T cells are resistant to CsA treatment in proliferation and cytokine production.Further analysis show PKB tg CD4+ T cells have a drastically reduced nuclear translocation of NFAT proteins and this is due to a direct interaction between PKB and NFAT. To study whether the negative regulatiopn of NFATs by PKB affects T cell development, we analyzed double tg mice expressing both, a constitutively active version of calcineurin (dCam) and myrPKB. dCam tg mice have a severe block in thymocyte development at the DN3 stage.But in the dCam/PKB double tg mice this developmental block is significantly rescued.This rescue of thymocyte development by PKB is due to the expression of RAG1 and subsequent TCRb chain expression. CsA treatment of neonatal thymic lobes from dCam mice restores normal thymocyte development, indicating involvement of NFATs in the severe block in dCam thymocyte development.Confocal studies clearly established that compared to dCam DN cells there is a significant reduction in the nuclear levels of NFATc1 and NFATc3 in dCam/PKB cells.Downregulation of nuclear NFAT levels by myrPKB thus seems to be an essential parameter in dCam cells to proceed with normal differentiation. In summary, the data from PKB tg peripheral CD4+ T cells and dCam/PKB double tg thymocytes clearly establish PKB as an important modulator of T cell development and function and PKB as a novel negative regulator of NFAT activation.}, subject = {T-Lymphozyt}, language = {en} }