@phdthesis{Terhoeven2020, author = {Terhoeven, Niklas}, title = {Genomics of carnivorous Droseraceae and Transcriptomics of Tobacco pollination as case studies for neofunctionalisation of plant defence mechanisms}, doi = {10.25972/OPUS-18971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189712}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Plants have evolved many mechanisms to defend against herbivores and pathogens. In many cases, these mechanisms took other duties. One example of such a neofunction- alisation would be carnivory. Carnivory evolved from the defence against herbivores. Instead of repelling the predator with a bitter taste, the plant kills it and absorbs its nutrients. A second example can be found in the pollination process. Many of the genes involved here were originally part of defence mechanisms against pathogens. In this thesis, I study these two examples on a genomic and transcriptomic level. The first project, Genomics of carnivorous Droseraceae, aims at obtaining annotated genome sequences of three carnivorous plants. I assembled the genome of Aldrovanda vesiculosa, annotated those of A. vesiculosa, Drosera spatulata and Dionaea muscipula and com- pared their genomic contents. Because of the high repetitiveness of the D. muscipula genome, I also developed reper, an assembly free method for detection, classification and quantification of repeats. With that method, we were able to study the repeats without the need of incorporating them into a genome assembly. The second large project investigates the role of DEFL (defensin-like) genes in pollen tube guidance in tobacco flowers. We sequenced the transcriptome of the SR1 strain in different stages of the pollination process. I assembled and annotated the transcriptome and searched for differentially expressed genes. We also used a method based on Hidden- Markov-Models (HMM) to find DEFLs, which I then analysed regarding their expression during the different stages of fertilisation. In total, this thesis results in annotated genome assemblies of three carnivorous Droser- aceae, which are used as a foundation for various analyses investigating the roots of car- nivory, insights into the role of DEFLs on a transcriptomic level in tobacco pollination and a new method for repeat identification in complex genomes.}, subject = {Droseraceae}, language = {en} } @phdthesis{Planchet2004, author = {Planchet, Elisabeth}, title = {Nitric oxide production by tobacco plants and cell cultures under normal conditions and under stress}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Stickstoffmonoxid (NO) ist ein gasf{\"o}rmiges freies Radikal. In tierischen Geweben ist NO an der Regulation vieler physiologischer Prozesse beteiligt. In den letzten zehn Jahren wurde immer wahrscheinlicher, dass NO auch in Pflanzen als „second messenger" fungiert. Besonderes Interesse fanden Berichte, dass NO als intermedi{\"a}res Signal bei der Induktion der hypersensitiven Antwort (HR) von Pflanzen auf Pathogene involviert ist. Im Gegensatz zu Tieren haben Pflanzen wahrscheinlich eine Reihe verschiedener Systeme, die NO produzieren k{\"o}nnen. Potentielle Kandidaten daf{\"u}r sind: cytosolische Nitratreduktase (NR; EC 1.6.6.1), PM-gebundene Nitrit: NO Reduktase (Ni:NOR), NO-Synthase (NOS; EC 1.14.13.39) und Xanthindehydrogenase (XDH; EC 1.1.1.204). Das Ziel dieser Arbeit bestand darin, die NO-Produktion von Pflanzen zu quantifizieren und die beteiligten enzymatischen Schritte zu identifizieren. Als wichtigste Methode zur NO-Messung wurde die Chemilumineszenz verwendet, mit der die NO Emission aus Pflanzen, Zellsuspensionen oder Enzyml{\"o}sungen in NO-freie Luft oder N2 in Echtzeit verfolgt werden konnte. Wir benutzten f{\"u}r unsere Analyse: Tabak Wildtyp (N. tabacum cv Xanthi oder cv Gatersleben) und Zellsuspensionskulturen davon, NR-freie Mutanten oder WT Pflanzen, die auf Ammonium angezogen wurden um NR-Induktion zu vermeiden, Pflanzen die auf Wolframat an Stelle von Molybdat wuchsen um die Synthese funktionierender MoCo-Enzyme zu unterdr{\"u}cken, und eine NO-{\"u}berproduzierende, Nitritreduktase (NiR)-defiziente Transformante. Normale Bl{\"a}tter von nitratern{\"a}hrten Pflanzen zeigten eine typisches NO-Emissionsmuster,bei dem die NO-Emission im Dunkeln niedrig, im Licht viel h{\"o}her, und unter anoxischen Bedingungen im Dunkeln mit weitem Abstand am h{\"o}chsten war. Aber selbst nach Erreichen maximaler Raten war die NO-Emission h{\"o}chstens 1 \% der extrahierbaren NR Aktivit{\"a}t. Auch eine L{\"o}sung hochgereinigter Nitratreduktase produzierte NO aus den Substraten Nitrit und NADH, und auch hier war die Rate der NO-Emission nur maximal 1\% der vorhandenen NR-Aktivit{\"a}t. Dieses {\"u}bereinstimmende Verh{\"a}ltnis von NR Aktivit{\"a}t und NO-Emission in Bl{\"a}ttern, Zellsuspensionen und einer NR-L{\"o}sung zeigt an dass die NO-L{\"o}schung nur gering war und dass deshalb die NO-Emissionsmessung eine zuverl{\"a}ssige Methode zur Quantifizierung der NO Produktion sein sollte. Die NO-Emission aus einer NiR-defizienten, nitritakkumulierenden Transformante warimmer sehr hoch. NR-freie Pflanzen oder Zellsuspensionen produzierten dagegen normalerweise kein NO, woraus geschlossen werden konnte, dass hier NR die einzige NOQuelle war. Die Rate war in der Regel korreliert mit der Nitritkonzentration, aber cytosolisches NADH erschien als ein weiterer wichtiger limitierender Faktor.{\"U}berraschenderweise reduzierten aber auch NR-freie Pflanzen oder Zellkulturen unter anoxischen Bedingungen Nitrit zu NO. Das beteiligte Enzymsystem war kein MoCo-Enzym und war Cyanid-sensitiv. Der pilzliche Elicitor Cryptogein induzierte nach Infiltration in Bl{\"a}tter oder nach Zugabe zu Zellsuspensionen bereits in nanomolaren Konzentrationen den Zelltod. Diese Antwort wurde verhindert oder zumindest stark verz{\"o}gert durch den NO-Scavenger PTIO oder c-PTIO. Die Schlussfolgerung war zun{\"a}chst, das NO tats{\"a}chlich an der HR-Induktion involviert war. Da aber das Reaktionsprodukt von c-PTIO und NO, c-PTI, den HR ebenfalls verhinderte ohne jedoch NO zu l{\"o}schen, scheint die weit verbreitete Verwendung von c-PTIO und seinen Derivaten f{\"u}r die Beweisf{\"u}hrung einer Beteiligung von NO zumindest fragw{\"u}rdig. Der HR wurde unterschiedslos sowohl in WT-Pflanzen als auch in NR-freien Pflanzen bzw. Zellsuspensionen induziert. NR ist also offensichtlich f{\"u}r den HR nicht erforderlich. Im Gegensatz zur publizierten Literaturdaten verhinderte auch eine kontinuierliche hohe {\"U}berproduktion von NO die Auspr{\"a}gung des HR nicht. Besonders {\"u}berraschend war der Befund, dass trotz der Hemmung des HR durch PTIO keinerlei Cryptogein-induzierte NO Produktion in Bl{\"a}ttern messbar war. Allerdings wurde in nitratern{\"a}hrten Zellsuspensionskulturen ca. 3-6 h nach Cryptogein-Gabe eine -wenn auch geringe-NOEmission beobachtet, die von einer Nitritakkumulation begleitet war. Beides blieb in Ammonium-ern{\"a}hrten Kulturen aus. Hier schien also eine gewisse Relation zwischen Cryptogein-induzierter NO Emission, NR und Nitrit zu bestehen, die im Detail noch nicht verstanden ist. Da der Zelltod aber auch in NR-freien Zellsuspensionskulturen auftrat, besteht offensichtlich kein kausaler Zusammenhang zwischen dieser NO-Emission, Nitritakkumulation und der Cryptogein-Wirkung. Da NOS-Inhibitoren weder den Zelltod noch die nitritanh{\"a}ngige NO-Emission verhinderten, scheint eine NOS-artige Aktivit{\"a}t ebenfalls keine Rolle zu spielen. Insgesamt werden damit die in der Literatur etablierte Rolle von NO als Signal beim HR und die Rolle von NOS als NO-Quelle stark in Frage gestellt.}, subject = {Tabak}, language = {en} }